Abstract
We undertook studies to determine whether secretagogue action on the exocrine pancreas and parotid is accompanied by phosphorylation of proteins in intact cells. For this purpose, rat pancreatic, and parotid lobules were preincubated with 32Pi for 45 min at 37 degrees C, washed, and then incubated at 37 degrees C in the presence or absence of secretagogues that effect discharge through different second messengers. Among a variety of polypeptides exhibiting enhanced phosphorylation in pancreatic lobules upon a 30-s incubation in the presence of the secretagogues carbamylcholine, cholecystokinin octapeptide, or secretin, one species with an Mr of 29,000 was especially notable for three reasons: (a) its enhanced level of phosphorylation was dependent on the dose of secretagogue used and was still apparent after incubation for 30 min at 37 degrees C; (b) an analogous phosphorylated polypeptide was observed in isoproterenol- stimulated parotid lobules; and (c) in both tissues its selective dephosphorylation was observed upon termination of stimulation by administration of atropine to carbamylcholine-stimulated pancreatic lobules and propranolol to isoproterenol-stimulated parotid lobules. These results suggest that the phosphorylation of one protein with an Mr of 29,000 is closely correlated both temporally and in a dose- dependent fashion with secretagogue action in both the exocrine pancreas and parotid.
Full Text
The Full Text of this article is available as a PDF (806.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Castle J. D., Jamieson J. D., Palade G. E. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J Cell Biol. 1972 May;53(2):290–311. doi: 10.1083/jcb.53.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler D. E., Williams J. A. Intracellular uptake and alpha-amylase and lactate dehydrogenase releasing actions of the divalent cation ionophore A23187 in dissociated pancreatic acinar cells. J Membr Biol. 1977 Apr 22;32(3-4):201–230. doi: 10.1007/BF01905220. [DOI] [PubMed] [Google Scholar]
- Galardy R. E., Jamieson J. D. Photoaffinity labeling of a peptide secretagogue receptor in the exocrine pancreas. Mol Pharmacol. 1977 Sep;13(5):852–863. [PubMed] [Google Scholar]
- Gardner J. D., Jensen R. T. Receptor for secretagogues on pancreatic acinar cells. Am J Physiol. 1980 Feb;238(2):G63–G66. doi: 10.1152/ajpgi.1980.238.2.G63. [DOI] [PubMed] [Google Scholar]
- Greengard P. Phosphorylated proteins as physiological effectors. Science. 1978 Jan 13;199(4325):146–152. doi: 10.1126/science.22932. [DOI] [PubMed] [Google Scholar]
- Gunther G. R., Jamieson J. D. Increased intracellular cyclic GMP does not correlate with protein discharge from pancreatic acinar cells. Nature. 1979 Jul 26;280(5720):318–320. doi: 10.1038/280318a0. [DOI] [PubMed] [Google Scholar]
- Jahn R., Söling H. D. Phosphorylation of the same specific protein during amylase release evoked by beta-adrenergic or cholinergic agonists in rat and mouse parotid glands. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6903–6906. doi: 10.1073/pnas.78.11.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahn R., Unger C., Söling H. D. Specific protein phosphorylation during stimulation of amylase secretion by beta-agonists or dibutyryl adenosine 3',5'-monophosphate in the rat parotid gland. Eur J Biochem. 1980 Nov;112(2):345–352. doi: 10.1111/j.1432-1033.1980.tb07211.x. [DOI] [PubMed] [Google Scholar]
- Jensen R. T., Gardner J. D. Cyclic nucleotide-dependent protein kinase activity in acinar cells from guinea pig pancreas. Gastroenterology. 1978 Nov;75(5):806–816. [PubMed] [Google Scholar]
- Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
- Schramm M., Naim E. Adenyl cyclase of rat parotid gland. Activation by fluoride and norepinephrine. J Biol Chem. 1970 Jun;245(12):3225–3231. [PubMed] [Google Scholar]
- Schultz G. S., Sarras M. P., Jr, Gunther G. R., Hull B. E., Alicea H. A., Gorelick F. S., Jamieson J. D. Guinea pig pancreatic acini prepared with purified collagenase. Exp Cell Res. 1980 Nov;130(1):49–62. doi: 10.1016/0014-4827(80)90041-5. [DOI] [PubMed] [Google Scholar]
- Schulz I., Stolze H. H. The exocrine pancreas: the role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Annu Rev Physiol. 1980;42:127–156. doi: 10.1146/annurev.ph.42.030180.001015. [DOI] [PubMed] [Google Scholar]
- Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
- Williams J. A., Lee M. Pancreatic acinar cells: use of Ca++ ionophore to separate enzyme release from the earlier steps in stimulus-secretion coupling. Biochem Biophys Res Commun. 1974 Sep 23;60(2):542–548. doi: 10.1016/0006-291x(74)90274-5. [DOI] [PubMed] [Google Scholar]