Abstract
Neutrophils isolated from the blood were compared to those from inflammatory exudates in the peritoneal cavity of guinea pigs. Inflammatory neutrophils were shown to have 10-fold more glycogen than blood neutrophils. This was also reflected in the morphology of these cells. The large accumulations of glycogen in inflammatory neutrophils exists in ordered arrays of beta-granules. Other morphological changes including accumulations of lipid droplets and a decrease in the number of lysosomal granules also accompany the change from blood neutrophils to inflammatory neutrophils. These results show that there are major metabolic differences in the two types of neutrophils.
Full Text
The Full Text of this article is available as a PDF (6.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerman G. A. Ultrastructural localization of glycogen in erythrocytes and developing erythrocytic cells in normal human bone marrow. Z Zellforsch Mikrosk Anat. 1973 Jul 16;140(4):433–444. doi: 10.1007/BF00306670. [DOI] [PubMed] [Google Scholar]
- Davidowitz J., Philips G. H., Pachter B. R., Breinin G. M. Cisternal distention in membrane-glycogen complexes of rabbit extraocular muscle. J Ultrastruct Res. 1975 Jun;51(3):307–313. doi: 10.1016/s0022-5320(75)80095-5. [DOI] [PubMed] [Google Scholar]
- Davidowitz J., Philips G., Breinin G. M. The distribution of membrane-glycogen complexes in the orbital surface layer of rabbit superior rectus. Tissue Cell. 1980;12(3):459–465. doi: 10.1016/0040-8166(80)90036-1. [DOI] [PubMed] [Google Scholar]
- DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. J Biol Chem. 1974 Nov 25;249(22):7111–7120. [PubMed] [Google Scholar]
- Granelli-Piperno A., Vassalli J. D., Reich E. RNA and protein synthesis in human peripheral blood polymorphonuclear leukocytes. J Exp Med. 1979 Jan 1;149(1):284–289. doi: 10.1084/jem.149.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTMAN J. D., GORETSKY D. M. Changes in the glycolytic activity of blood and exudate leukocytes during an inflammatory reaction. Anat Rec. 1960 Oct;138:149–157. doi: 10.1002/ar.1091380208. [DOI] [PubMed] [Google Scholar]
- Hoover R. L., Briggs R. T., Karnovsky M. J. The adhesive interaction between polymorphonuclear leukocytes and endothelial cells in vitro. Cell. 1978 Jun;14(2):423–428. doi: 10.1016/0092-8674(78)90127-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUCK D. J. Glycogen synthesis from uridine diphosphate glucose. The distribution of the enzyme in liver cell fractions. J Biophys Biochem Cytol. 1961 Jun;10:195–209. doi: 10.1083/jcb.10.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazdins J. K., Koech D. K., Karnovsky M. L. Oxidation of glucose by mouse peritoneal macrophages: a comparison of suspensions and monolayers. J Cell Physiol. 1980 Nov;105(2):191–196. doi: 10.1002/jcp.1041050202. [DOI] [PubMed] [Google Scholar]
- Passonneau J. V., Lauderdale V. R. A comparison of three methods of glycogen measurement in tissues. Anal Biochem. 1974 Aug;60(2):405–412. doi: 10.1016/0003-2697(74)90248-6. [DOI] [PubMed] [Google Scholar]
- Payne D. N., Ackerman G. A. Ultrastructural autoradiographic study of the uptake and localization of D-glucose-3H. Blood. 1979 Jan;53(1):122–133. [PubMed] [Google Scholar]
- Rebuck J. W., Whitehouse F. W., Noonan S. M. Energization of lymphocytes transforming to macrophages in human inflammation. Biochem Pharmacol. 1968 Mar;(Suppl):159–170. doi: 10.1016/0006-2952(68)90303-1. [DOI] [PubMed] [Google Scholar]
- Rikihisa Y., Ito S. Intracellular localization of Rickettsia tsutsugamushi in polymorphonuclear leukocytes. J Exp Med. 1979 Sep 19;150(3):703–708. doi: 10.1084/jem.150.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J. M., Roos D. S., Davidson R. L., Karnovsky M. J. Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion. J Cell Sci. 1979 Dec;40:63–75. doi: 10.1242/jcs.40.1.63. [DOI] [PubMed] [Google Scholar]
- SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
- Sand Petersen C., Herlin T., Esmann V. Effects of cytochalasin B on glycogen metabolism in phagocytizing human polymorphonuclear leukocytes. FEBS Lett. 1979 Mar 1;99(1):147–151. doi: 10.1016/0014-5793(79)80267-7. [DOI] [PubMed] [Google Scholar]
- Scott R. B., Still W. J. Glycogen in human peripheral blood leukocytes. II. The macromolecular state of leukocyte glycogen. J Clin Invest. 1968 Feb;47(2):353–359. doi: 10.1172/JCI105731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WULFF H. R. Histochemical studies of leukocytes from an inflammatory exudate. Glycogen and phosphorylase. Acta Haematol. 1962;28:86–94. doi: 10.1159/000207242. [DOI] [PubMed] [Google Scholar]
- Wanson J. C., Drochmans P. Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. J Cell Biol. 1972 Aug;54(2):206–224. doi: 10.1083/jcb.54.2.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright D. G., Gallin J. I. Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo. J Immunol. 1979 Jul;123(1):285–294. [PubMed] [Google Scholar]