Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Dec 1;95(3):885–892. doi: 10.1083/jcb.95.3.885

Pattern of chick gene activation in chick erythrocyte heterokaryons

PMCID: PMC2112920  PMID: 7153250

Abstract

The reactivation of chicken erythrocyte nuclei in chick-mammalian heterokaryons resulted in the activation of chick globin gene expression. However, the level of chick globin synthesis was dependent on the mammalian parental cell type. The level of globin synthesis was high in chick erythrocyte-rat L6 myoblast heterokaryons but was 10-fold lower in chick erythrocyte-mouse A9 cell heterokaryons. Heterokaryons between chick erythrocytes and a hybrid cell line between L6 and A9 expressed chick globin at a level similar to that of A9 heterokaryons. Erythrocyte nuclei reactivated in murine NA neuroblastoma, 3T3, BHK and NRK cells, or in chicken fibroblasts expressed less than 5% chick globin compared with the chick erythrocyte-L6 myoblast heterokaryons. The amount of globin expressed in heterokaryons correlated with globin mRNA levels. Hemin increased beta globin synthesis two- to threefold in chick erythrocyte-NA neuroblastoma heterokaryons; however, total globin synthesis was still less than 10% that of L6 heterokaryons. Distinct from the variability in globin expression, chick erythrocyte heterokaryons synthesized chick constitutive polypeptides in similar amounts independent of the mammalian parental cell type. Approximately 40 constitutive chick polypeptides were detected in heterokaryons after immunopurification and two-dimensional gel electrophoresis. The pattern of synthesis of these polypeptides was similar in heterokaryons formed by fusing chicken erythrocytes with rat L6 myoblasts, hamster BHK cells, or mouse neuroblastoma cells. Three polypeptides synthesized by non-erythroid chicken cells but less so by embryonic erythrocytes were conspicuous in heterokaryons. Two abundant erythrocyte polypeptides were insignificant in non-erythroid chicken cells and in heterokaryons.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appels R., Bolund L., Ringertz N. R. Biochemical analysis of reactivated chick erythrocyte nuclei isolated from chick-HeLa heterokaryons. J Mol Biol. 1974 Aug 5;87(2):339–355. doi: 10.1016/0022-2836(74)90154-5. [DOI] [PubMed] [Google Scholar]
  2. Augusti-Tocco G., Sato G. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):311–315. doi: 10.1073/pnas.64.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bramwell M. E. Detection of chick rRNA in the cytoplasm of heterokaryons containing reactivated chick red cell nuclei. Exp Cell Res. 1978 Mar 1;112(1):63–71. doi: 10.1016/0014-4827(78)90525-6. [DOI] [PubMed] [Google Scholar]
  4. Brzeski H., Linder S., Krondahl U., Ringertz N. R. Pattern of polypeptide synthesis in myoblast hybrids. Exp Cell Res. 1980 Aug;128(2):267–278. doi: 10.1016/0014-4827(80)90063-4. [DOI] [PubMed] [Google Scholar]
  5. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  6. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  7. Crerar M. M., Andrews S. J., David E. S., Somers D. G., Mandel J. L., Pearson M. L. Amanitin binding to RNA polymerase II in alpha-amanitin-resistant rat myoblast mutants. J Mol Biol. 1977 May 15;112(2):317–329. doi: 10.1016/s0022-2836(77)80147-2. [DOI] [PubMed] [Google Scholar]
  8. Curtis P., Finnigan A. C., Rovera G. The beta major and beta minor globin nuclear transcripts of Friend erythroleukemia cells induced to differentiate in culture. J Biol Chem. 1980 Oct 10;255(19):8971–8974. [PubMed] [Google Scholar]
  9. Edmonds M., Caramela M. G. The isolation and characterization of adenosine monophosphate-rich polynucleotides synthesized by Ehrlich ascites cells. J Biol Chem. 1969 Mar 10;244(5):1314–1324. [PubMed] [Google Scholar]
  10. Harris H., Sidebottom E., Grace D. M., Bramwell M. E. The expression of genetic information: a study with hybrid animal cells. J Cell Sci. 1969 Mar;4(2):499–525. doi: 10.1242/jcs.4.2.499. [DOI] [PubMed] [Google Scholar]
  11. Harris H., Watkins J. F., Ford C. E., Schoefl G. I. Artificial heterokaryons of animal cells from different species. J Cell Sci. 1966 Mar;1(1):1–30. doi: 10.1242/jcs.1.1.1. [DOI] [PubMed] [Google Scholar]
  12. Harrison P. R., Affara N., McNab A., Paul J. Erythroid differentiation in a Friend erythroleukemic cell X lymphoma hybrid cell line is limited, possibly due to reduced hem levels. Exp Cell Res. 1977 Oct 15;109(2):237–246. doi: 10.1016/0014-4827(77)90002-7. [DOI] [PubMed] [Google Scholar]
  13. Kahn C. R., Bertolotti R., Ninio M., Weiss M. C. Short-lived cytoplasmic regulators of gene expression in cell cybrids. Nature. 1981 Apr 23;290(5808):717–720. doi: 10.1038/290717a0. [DOI] [PubMed] [Google Scholar]
  14. Linder S., Zuckerman S. H., Ringertz N. R. Reactivation of chicken erythrocyte nuclei in heterokaryons results in expression of adult chicken globin genes. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6286–6289. doi: 10.1073/pnas.78.10.6286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McMaster G. K., Carmichael G. G. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835–4838. doi: 10.1073/pnas.74.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mével-Ninio M., Weiss M. C. Immunofluorescence analysis of the time-course of extinction, reexpression, and activation of albumin production in rat hepatoma-mouse fibroblast heterokaryons and hybrids. J Cell Biol. 1981 Aug;90(2):339–350. doi: 10.1083/jcb.90.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  18. Ringertz N. R., Carlsson S. A., Ege T., Bolund L. Detection of human and chick nuclear antigens in nuclei of chick erythrocytes during reactivation in heterokaryons with HeLa cells. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3228–3232. doi: 10.1073/pnas.68.12.3228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ringertz N. R., Krondahl U., Coleman J. R. Reconstitution of cells by fusion of cell fragments. I. Myogenic expression after fusion of minicells from rat myoblasts (L6) with mouse fibroblast (A9) cytoplasm. Exp Cell Res. 1978 May;113(2):233–246. doi: 10.1016/0014-4827(78)90363-4. [DOI] [PubMed] [Google Scholar]
  20. Ross J., Sautner D. Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell. 1976 Aug;8(4):513–520. doi: 10.1016/0092-8674(76)90219-1. [DOI] [PubMed] [Google Scholar]
  21. Rutherford T. R., Clegg J. B., Weatherall D. J. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979 Jul 12;280(5718):164–165. doi: 10.1038/280164a0. [DOI] [PubMed] [Google Scholar]
  22. Rutherford T. R., Weatherall D. J. Deficient heme synthesis as the cause of noninducibility of hemoglobin synthesis in a Friend erythroleukemia cell line. Cell. 1979 Feb;16(2):415–423. doi: 10.1016/0092-8674(79)90017-5. [DOI] [PubMed] [Google Scholar]
  23. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weintraub H., Larsen A., Groudine M. Alpha-Globin-gene switching during the development of chicken embryos: expression and chromosome structure. Cell. 1981 May;24(2):333–344. doi: 10.1016/0092-8674(81)90323-8. [DOI] [PubMed] [Google Scholar]
  26. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES