Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Nov 1;95(2):632–640. doi: 10.1083/jcb.95.2.632

Electron microscopy of human factor VIII/Von Willebrand glycoprotein: effect of reducing reagents on structure and function

PMCID: PMC2112957  PMID: 6815213

Abstract

The structure of native and progressively reduced human factor VIII/von Willebrand factor (FVIII/vWF) was examined by electron microscopy and SDS gel electrophoresis and then correlated with its biological activities. Highly resolved electron micrographs of well-spaced, rotary- shadowed FVIII/vWF molecules showed their structure to consist of a very flexible filament that contains irregularly spaced small nodules. Filaments ranged from 50 to 1,150 nm with a mean length of 478 nm and lacked fixed, large globular domains as seen in fibrinogen and IgM. A population of multimeric FVIII/vWF species ranging in molecular weight from 1 to 5 million daltons and differing in size alternately by one and two subunits was observed on SDS-2% polyacrylamide-0.5% agarose gel electrophoresis. With progressive reduction of disulfide bonds by dithiothreitol (DTT), the electron microscopic size of FVIII/vWF decreased in parallel with increased electrophoretic mobility on SDS- agarose gels; between 0.1 and 0.5 mM DTT its structure changed from predominantly fibrillar species to large nodular forms. A 50% loss of vWF specific activity and FVIII procoagulant activity occurred at 0.4 mM DTT and 1 mM DTT, respectively, corresponding to the reduction of 4 and 12 disulfide bonds of the 62 disulfides per 200,000-dalton subunit. We conclude that reduction of a few critical disulfide bonds results in a major structural change by electron microscopy and a concomitant loss of approximately 50% of the vWF function.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austen D. E., Carey M., Howard M. A. Dissociation of Factor VIII-related antigen into subunits. Nature. 1975 Jan 3;253(5486):55–56. doi: 10.1038/253055a0. [DOI] [PubMed] [Google Scholar]
  2. Beck E. A., Tranqui-Pouit L., Chapel A., Perret B. A., Furlan M., Hudry-Clergeon G., Suscillon M. Studies on factor VIII-related protein. I. Ultrastructural and electrophoretic heterogeneity of human factor VIII-related protein. Biochim Biophys Acta. 1979 May 23;578(1):155–163. doi: 10.1016/0005-2795(79)90123-5. [DOI] [PubMed] [Google Scholar]
  3. Blombäck B., Hessel B., Savidge G., Wikström L., Blombäck M. The effect of reducing agents on factor VIII and other coagulation factors. Thromb Res. 1978 Jun;12(6):1177–1194. doi: 10.1016/0049-3848(78)90072-5. [DOI] [PubMed] [Google Scholar]
  4. Brown J. E., Baugh R., Hougie C. Selective destruction of the platelet aggregation component in bovine factor VIII preparations by reduction. Thromb Res. 1976 Jun;8(6):777–783. doi: 10.1016/0049-3848(76)90006-2. [DOI] [PubMed] [Google Scholar]
  5. Counts R. B., Paskell S. L., Elgee S. K. Disulfide bonds and the quaternary structure of factor VIII/von Willebrand factor. J Clin Invest. 1978 Sep;62(3):702–709. doi: 10.1172/JCI109178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engel J., Odermatt E., Engel A., Madri J. A., Furthmayr H., Rohde H., Timpl R. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol. 1981 Jul 25;150(1):97–120. doi: 10.1016/0022-2836(81)90326-0. [DOI] [PubMed] [Google Scholar]
  7. Erickson H. P., Carrell N., McDonagh J. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. J Cell Biol. 1981 Dec;91(3 Pt 1):673–678. doi: 10.1083/jcb.91.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fass D. N., Knutson G. J., Bowie E. J. Porcine Willebrand factor: a population of multimers. J Lab Clin Med. 1978 Feb;91(2):307–320. [PubMed] [Google Scholar]
  9. Fowler W. E., Erickson H. P. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol. 1979 Oct 25;134(2):241–249. doi: 10.1016/0022-2836(79)90034-2. [DOI] [PubMed] [Google Scholar]
  10. Fowler W. E., Fretto L. J., Erickson H. P., McKee P. A. Electron microsocpy of plasmic fragments of human fibrinogen as related to trinodular structure of the intact molecule. J Clin Invest. 1980 Jul;66(1):50–56. doi: 10.1172/JCI109834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukui H., Mikami S., Okuda T., Murashima N., Takase T. Studies of von Willebrand factor: effects of different kinds of carbohydrate oxidases, SH-inhibitors and some other chemical reagents. Br J Haematol. 1977 Jun;36(2):259–270. doi: 10.1111/j.1365-2141.1977.tb00647.x. [DOI] [PubMed] [Google Scholar]
  12. Gralnick H. R., Williams S. B., Morisato D. K. Effect of multimeric structure of the factor VIII/von Willebrand factor protein on binding to platelets. Blood. 1981 Aug;58(2):387–397. [PubMed] [Google Scholar]
  13. Head D. R., Bowman R. P., Marmer D. J., Brossoit A. D. An improvemed assay for von Willebrand factor. Am J Clin Pathol. 1979 Dec;72(6):991–995. doi: 10.1093/ajcp/72.6.991. [DOI] [PubMed] [Google Scholar]
  14. Hershgold E. J. Factor VIII. Ann N Y Acad Sci. 1975 Jan 20;240:70–73. doi: 10.1111/j.1749-6632.1975.tb53323.x. [DOI] [PubMed] [Google Scholar]
  15. Hoyer L. W., Shainoff J. R. Factor VIII-related protein circulates in normal human plasma as high molecular weight multimers. Blood. 1980 Jun;55(6):1056–1059. [PubMed] [Google Scholar]
  16. Hoyer L. W. The factor VIII complex: structure and function. Blood. 1981 Jul;58(1):1–13. [PubMed] [Google Scholar]
  17. Hoyer L. W. Von Willebrand's disease. Prog Hemost Thromb. 1976;3:231–287. [PubMed] [Google Scholar]
  18. Kao K. J., Pizzo S. V., McKee P. A. Factor VIII/von Willebrand protein. Modification of its carbohydrate causes reduced binding to platelets. J Biol Chem. 1980 Nov 10;255(21):10134–10139. [PubMed] [Google Scholar]
  19. Kao K. J., Pizzo S. V., McKee P. A. Platelet receptors for human Factor VIII/von Willebrand protein: functional correlation of receptor occupancy and ristocetin-induced platelet aggregation. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5317–5320. doi: 10.1073/pnas.76.10.5317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LANGDELL R. D., WAGNER R. H., BRINKHOUS K. M. Effect of antihemophilic factor on one-stage clotting tests; a presumptive test for hemophilia and a simple one-stage antihemophilic factor assy procedure. J Lab Clin Med. 1953 Apr;41(4):637–647. [PubMed] [Google Scholar]
  21. Legaz M. E., Schmer G., Counts R. B., Davie E. W. Isolation and characterization of human Factor VIII (antihemophilic factor). J Biol Chem. 1973 Jun 10;248(11):3946–3955. [PubMed] [Google Scholar]
  22. Martin S. E., Marder V. J., Francis C. W., Barlow G. H. Structural studies of the functional heterogeneity of von Willebrand protein polymers. Blood. 1981 Feb;57(2):313–323. [PubMed] [Google Scholar]
  23. McKee P. A., Andersen J. C., Switzer M. E. Molecular structural studies of human factor VIII. Ann N Y Acad Sci. 1975 Jan 20;240:8–33. doi: 10.1111/j.1749-6632.1975.tb53319.x. [DOI] [PubMed] [Google Scholar]
  24. McKee P. A. Observations on structure-function relationships of human antihemophilic/von Willebrand factor protein. Ann N Y Acad Sci. 1981;370:210–226. doi: 10.1111/j.1749-6632.1981.tb29734.x. [DOI] [PubMed] [Google Scholar]
  25. Meyer D., Obert B., Pietu G., Lavergne J. M., Zimmerman T. S. Multimeric structure of factor VIII/von Willebrand factor in von Willebrand's disease. J Lab Clin Med. 1980 Apr;95(4):590–602. [PubMed] [Google Scholar]
  26. Mosher D. F. Fibronectin. Prog Hemost Thromb. 1980;5:111–151. [PubMed] [Google Scholar]
  27. Newman J., Johnson A. J., Karpatkin M. H., Puszkin S. Methods for the production of clinically effective intermediate- and high-purity factor-VIII concentrates. Br J Haematol. 1971 Jul;21(1):1–20. doi: 10.1111/j.1365-2141.1971.tb03413.x. [DOI] [PubMed] [Google Scholar]
  28. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  29. Peake I. R., Bloom A. L. The dissociation of factor VIII by reducing agents, high salt concentration and affinity chromatography. Thromb Haemost. 1976 Feb 29;35(1):191–201. [PubMed] [Google Scholar]
  30. Perret B. A., Furlan M., Beck E. A. Studies on factor VIII-related protein. II. Estimation of molecular size differences between factor VIII oligomers. Biochim Biophys Acta. 1979 May 23;578(1):164–174. doi: 10.1016/0005-2795(79)90124-7. [DOI] [PubMed] [Google Scholar]
  31. Ruggeri Z. M., Zimmerman T. S. The complex multimeric composition of factor VIII/von Willebrand factor. Blood. 1981 Jun;57(6):1140–1143. [PubMed] [Google Scholar]
  32. Ruggeri Z. M., Zimmerman T. S. Variant von Willebrand's disease: characterization of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets. J Clin Invest. 1980 Jun;65(6):1318–1325. doi: 10.1172/JCI109795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schwartz M. L., Pizzo S. V., Hill R. L., McKee P. A. Human Factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem. 1973 Feb 25;248(4):1395–1407. [PubMed] [Google Scholar]
  34. Seghatchian M. J., Nilsson I. M., Homberg L., Miller-Anderson M. Molecular size distribution of factor VIII in native plasma. Thromb Res. 1979;14(4-5):589–598. doi: 10.1016/0049-3848(79)90114-2. [DOI] [PubMed] [Google Scholar]
  35. Shapiro G. A., Andersen J. C., Pizzo S. V., McKee P. A. The subunit structure of normal and hemophilic factor VIII. J Clin Invest. 1973 Sep;52(9):2198–2210. doi: 10.1172/JCI107405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shotton D. M., Burke B. E., Branton D. The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. J Mol Biol. 1979 Jun 25;131(2):303–329. doi: 10.1016/0022-2836(79)90078-0. [DOI] [PubMed] [Google Scholar]
  37. Sodetz J. M., Paulson J. C., Pizzo S. V., McKee P. A. Carbohydrate on human factor VIII/von Willebrand factor. Impairment of function by removal of specific galactose residues. J Biol Chem. 1978 Oct 25;253(20):7202–7206. [PubMed] [Google Scholar]
  38. Sodetz J. M., Pizzo S. V., McKee P. A. Relationship of sialic acid to function and in vivo survival of human factor VIII/von Willebrand factor protein. J Biol Chem. 1977 Aug 10;252(15):5538–5546. [PubMed] [Google Scholar]
  39. Switzer M. E., McKee P. A. Reactions of thrombin with human factor VIII/von Willebrande factor protein. J Biol Chem. 1980 Nov 25;255(22):10606–10611. [PubMed] [Google Scholar]
  40. Switzer M. E., McKee P. A. Studies on human antihemophilic factor. Evidence for a covalently linked subunit structure. J Clin Invest. 1976 Apr;57(4):925–937. doi: 10.1172/JCI108369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tan H. K., Andersen J. C. Human factor VIII: morphometric analysis of purified material in solution. Science. 1977 Dec 2;198(4320):932–934. doi: 10.1126/science.303809. [DOI] [PubMed] [Google Scholar]
  42. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  43. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  44. Weinstein M., Deykin D. Comparison of factor VIII-related von Willebrand factor proteins prepared from human cryoprecipitate and factor VIII concentrate. Blood. 1979 Jun;53(6):1095–1105. [PubMed] [Google Scholar]
  45. Weiss H. J., Rogers J., Brand H. Defective ristocetin-induced platelet aggregation in von Willebrand's disease and its correction by factor VIII. J Clin Invest. 1973 Nov;52(11):2697–2707. doi: 10.1172/JCI107464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van Dieijen G., Tans G., Rosing J., Hemker H. C. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J Biol Chem. 1981 Apr 10;256(7):3433–3442. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES