Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Nov 1;95(2):654–666. doi: 10.1083/jcb.95.2.654

A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices

PMCID: PMC2112965  PMID: 6183279

Abstract

We have described a monoclonal antibody that rounds and detaches chick skeletal myoblasts and myotubes from extracellular substrata. The antibody also inhibits the attachment of myogenic cells to a gelatin- coated substratum but has no detectable effect on myoblast fusion. The cellular response to antibody treatment varies with differentiation and cell type. Young myoblasts and myotubes are rapidly rounded and detached by the antibody. Older myotubes require longer incubation times or higher antibody titers for rounding and detachment. Chick embryo fibroblasts, cardiac cells, and neurons are not similarly rounded and remain attached. Since the antibody also detaches cells from embryonic muscle tissue explants, the cell-substratum interaction perturbed by the antibody appears relevant to the in vivo interaction of myogenic cells with their extracellular matrices. Binding studies using iodinated antibody revealed 2-4 x 10(5) sites per myoblast with an apparent Kd in the range of 2-5 x 10(-9) molar. Embryo fibroblasts bind antibody as well and display approximately twice the number of binding sites per cell. The fluorescence distribution of antigen on myoblasts and myotubes is somewhat punctate and particularly bright along the edge of the myotube. The distribution on fibroblasts was also punctate and was particularly bright along the cell periphery and portions of stress fibers. For both cell types the binding was distinctly different than that reported for collagen, fibronectin, and other extracellular molecules. The antigen, as isolated by antibody affinity chromatography, inhibits antibody-induced rounding. SDS PAGE reveals two unique polypeptides migrating in the region of approximately 120 and 160 kilodaltons (kd). The most straightforward mechanism for the antibody-induced rounding and detachment is the perturbation of a membrane molecule involved in adhesion. The hypothesized transmembrane link between extracellular macromolecules and the cytoskeleton provides an obvious candidate.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Dunn G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp Cell Res. 1975 Apr;92(1):57–62. doi: 10.1016/0014-4827(75)90636-9. [DOI] [PubMed] [Google Scholar]
  2. Bertolotti R., Rutishauser U., Edelman G. M. A cell surface molecule involved in aggregation of embryonic liver cells. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4831–4835. doi: 10.1073/pnas.77.8.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birchmeier C., Kreis T. E., Eppenberger H. M., Winterhalter K. H., Birchmeier W. Corrugated attachment membrane in WI-38 fibroblasts: alternating fibronectin fibers and actin-containing focal contacts. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4108–4112. doi: 10.1073/pnas.77.7.4108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bischoff R., Holtzer H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J Cell Biol. 1970 Jan;44(1):134–150. doi: 10.1083/jcb.44.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloch R. J., Geiger B. The localization of acetylcholine receptor clusters in areas of cell-substrate contact in cultures of rat myotubes. Cell. 1980 Aug;21(1):25–35. doi: 10.1016/0092-8674(80)90111-7. [DOI] [PubMed] [Google Scholar]
  6. Bornstein P., Ash J. F. Cell surface-associated structural proteins in connective tissue cells. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2480–2484. doi: 10.1073/pnas.74.6.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
  8. Burden S. J., Sargent P. B., McMahan U. J. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol. 1979 Aug;82(2):412–425. doi: 10.1083/jcb.82.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burridge K., Feramisco J. R. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell. 1980 Mar;19(3):587–595. doi: 10.1016/s0092-8674(80)80035-3. [DOI] [PubMed] [Google Scholar]
  10. Chen W. T., Singer S. J. Fibronectin is not present in the focal adhesions formed between normal cultured fibroblasts and their substrata. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7318–7322. doi: 10.1073/pnas.77.12.7318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chiquet M., Eppenberger H. M., Turner D. C. Muscle morphogenesis: Evidence for an organizing function of exogenous fibronectin. Dev Biol. 1981 Dec;88(2):220–235. doi: 10.1016/0012-1606(81)90166-4. [DOI] [PubMed] [Google Scholar]
  12. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  13. Damsky C. H., Knudsen K. A., Dorio R. J., Buck C. A. Manipulation of cell-cell and cell-substratum interactions in mouse mammary tumor epithelial cells using broad spectrum antisera. J Cell Biol. 1981 May;89(2):173–184. doi: 10.1083/jcb.89.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Den H., Malinzak D. A., Keating H. J., Rosenberg A. Influence of Concanavalin A, wheat germ agglutinin, and soybean agglutinin on the fusion of myoblasts in vitro. J Cell Biol. 1975 Dec;67(3):826–834. doi: 10.1083/jcb.67.3.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dunia I., Nicolas J. F., Jakob H., Benedetti E. L., Jacob F. Junctional modulation in mouse embryonal carcinoma cells by Fab fragments of rabbit anti-embryonal carcinoma cell serum. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3387–3391. doi: 10.1073/pnas.76.7.3387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  17. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
  18. Geiger B., Tokuyasu K. T., Dutton A. H., Singer S. J. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4127–4131. doi: 10.1073/pnas.77.7.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Greve J. M., Gottlieb D. I. Monoclonal antibodies which alter the morphology of cultured chick myogenic cells. J Cell Biochem. 1982;18(2):221–229. doi: 10.1002/jcb.1982.240180209. [DOI] [PubMed] [Google Scholar]
  20. Heath J. P., Dunn G. A. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J Cell Sci. 1978 Feb;29:197–212. doi: 10.1242/jcs.29.1.197. [DOI] [PubMed] [Google Scholar]
  21. Holtzer H., Croop J., Dienstman S., Ishikawa H., Somlyo A. P. Effects of cytochaslasin B and colcemide on myogenic cultures. Proc Natl Acad Sci U S A. 1975 Feb;72(2):513–517. doi: 10.1073/pnas.72.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Holtzer H., Pacifici M., Payette R., Croop J., Dlugosz A., Toyama Y. TPA reversibly blocks the differentiation of chick myogenic, chondrogenic, and melanogenic cells. Carcinog Compr Surv. 1982;7:347–357. [PubMed] [Google Scholar]
  23. Hsieh P., Sueoka N. Antisera inhibiting mammalian cell spreading and possible cell surface antigens involved. J Cell Biol. 1980 Sep;86(3):866–873. doi: 10.1083/jcb.86.3.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
  25. Knudsen K. A., Horwitz A. F. Differential inhibition of myoblast fusion. Dev Biol. 1978 Oct;66(2):294–307. doi: 10.1016/0012-1606(78)90239-7. [DOI] [PubMed] [Google Scholar]
  26. Knudsen K. A., Horwitz A. F. Tandem events in myoblast fusion. Dev Biol. 1977 Jul 15;58(2):328–338. doi: 10.1016/0012-1606(77)90095-1. [DOI] [PubMed] [Google Scholar]
  27. Knudsen K. A., Rao P. E., Damsky C. H., Buck C. A. Membrane glycoproteins involved in cell--substratum adhesion. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6071–6075. doi: 10.1073/pnas.78.10.6071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Konigsberg I. R. Diffusion-mediated control of myoblast fusion. Dev Biol. 1971 Sep;26(1):133–152. doi: 10.1016/0012-1606(71)90113-8. [DOI] [PubMed] [Google Scholar]
  29. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  30. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Lloyd C. W., Smith C. G., Woods A., Rees D. A. Mechanisms of cellular adhesion. II. The interplay between adhesion, the cytoskeleton and morphology in substrate-attached cells. Exp Cell Res. 1977 Dec;110(2):427–437. doi: 10.1016/0014-4827(77)90309-3. [DOI] [PubMed] [Google Scholar]
  33. Mason D. W., Williams A. F. The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem J. 1980 Apr 1;187(1):1–20. doi: 10.1042/bj1870001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Neill M. C., Stockdale F. E. Differentiation without cell division in cultured skeletal muscle. Dev Biol. 1972 Dec;29(4):410–418. doi: 10.1016/0012-1606(72)90081-4. [DOI] [PubMed] [Google Scholar]
  35. Rees D. A., Lloyd C. W., Thom D. Control of grip and stick in cell adhesion through lateral relationships of membrane glycoproteins. Nature. 1977 May 12;267(5607):124–128. doi: 10.1038/267124a0. [DOI] [PubMed] [Google Scholar]
  36. Revel J. P., Hoch P., Ho D. Adhesion of culture cells to their substratum. Exp Cell Res. 1974 Mar 15;84(1):207–218. doi: 10.1016/0014-4827(74)90398-x. [DOI] [PubMed] [Google Scholar]
  37. Revel J. P., Wolken K. Electronmicroscope investigations of the underside of cells in culture. Exp Cell Res. 1973 Mar 30;78(1):1–14. doi: 10.1016/0014-4827(73)90031-1. [DOI] [PubMed] [Google Scholar]
  38. Rohrschneider L. R. Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3514–3518. doi: 10.1073/pnas.77.6.3514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sasse J., von der Mark H., Kühl U., Dessau W., von der Mark K. Origin of collagen types I, III, and V in cultures of avian skeletal muscle. Dev Biol. 1981 Apr 15;83(1):79–89. doi: 10.1016/s0012-1606(81)80010-3. [DOI] [PubMed] [Google Scholar]
  41. Scott R. E. Plasma membrane vesiculation: a new technique for isolation of plasma membranes. Science. 1976 Nov 12;194(4266):743–745. doi: 10.1126/science.982044. [DOI] [PubMed] [Google Scholar]
  42. Sessions A., Horwitz A. F. Myoblast aminophospholipid asymmetry differs from that of fibroblasts. FEBS Lett. 1981 Nov 2;134(1):75–78. doi: 10.1016/0014-5793(81)80554-6. [DOI] [PubMed] [Google Scholar]
  43. Singer I. I., Paradiso P. R. A transmembrane relationship between fibronectin and vinculin (130 kd protein): serum modulation in normal and transformed hamster fibroblasts. Cell. 1981 May;24(2):481–492. doi: 10.1016/0092-8674(81)90339-1. [DOI] [PubMed] [Google Scholar]
  44. Singer I. I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell. 1979 Mar;16(3):675–685. doi: 10.1016/0092-8674(79)90040-0. [DOI] [PubMed] [Google Scholar]
  45. Vaheri A., Kurkinen M., Lehto V. P., Linder E., Timpl R. Codistribution of pericellular matrix proteins in cultured fibroblasts and loss in transformation: fibronectin and procollagen. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4944–4948. doi: 10.1073/pnas.75.10.4944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wehland J., Osborn M., Weber K. Cell-to-substratum contacts in living cells: a direct correlation between interference-reflexion and indirect-immunofluorescence microscopy using antibodies against actin and alpha-actinin. J Cell Sci. 1979 Jun;37:257–273. doi: 10.1242/jcs.37.1.257. [DOI] [PubMed] [Google Scholar]
  47. Wylie D. E., Damsky C. H., Buck C. A. Studies on the function of cell surface glycoproteins. I. Use of antisera to surface membranes in the identification of membrane components relevant to cell-substrate adhesion. J Cell Biol. 1979 Feb;80(2):385–402. doi: 10.1083/jcb.80.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES