Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Nov 1;95(2):609–618. doi: 10.1083/jcb.95.2.609

In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold

NJ Hutchison, PR Langer-Safer, DC Ward, BA Hamkalo
PMCID: PMC2112979  PMID: 6183277

Abstract

In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average ten times that of background binding. This method is rapid and possesses the potential to allow precise ultrastructual localization of DNA sequences in chromosomes and chromatin.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahnström G., Natarajan A. T. Localisation of repetitive DNA in mouse cells by in situ hybridization and dye binding techniques. Hereditas. 1974;76(2):316–320. doi: 10.1111/j.1601-5223.1974.tb01349.x. [DOI] [PubMed] [Google Scholar]
  2. Bauman J. G., Wiegant J., Borst P., van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp Cell Res. 1980 Aug;128(2):485–490. doi: 10.1016/0014-4827(80)90087-7. [DOI] [PubMed] [Google Scholar]
  3. Bauman J. G., Wiegant J., Van Duijn P., Lubsen N. H., Sondermeijer P. J., Hennig W., Kubli E. Rapid and high resolution detection of in situ hybridisation to polytene chromosomes using fluorochrome-labeled RNA. Chromosoma. 1981;84(1):1–18. doi: 10.1007/BF00293359. [DOI] [PubMed] [Google Scholar]
  4. Bauman J. G., Wiegant J., van Duijn P. Cytochemical hybridization with fluorochrome-labeled RNA. II. Applications. J Histochem Cytochem. 1981 Feb;29(2):238–246. doi: 10.1177/29.2.6166654. [DOI] [PubMed] [Google Scholar]
  5. Bostock C. J., Clark E. M. Satellite DNA in large marker chromosomes of methotrexate-resistant mouse cells. Cell. 1980 Mar;19(3):709–715. doi: 10.1016/s0092-8674(80)80047-x. [DOI] [PubMed] [Google Scholar]
  6. Brahic M., Haase A. T. Detection of viral sequences of low reiteration frequency by in situ hybridization. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6125–6129. doi: 10.1073/pnas.75.12.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen T. R., Ruddle F. H. Karyotype analysis utilizing differentially stained constitutive heterochromatin of human and murine chromosomes. Chromosoma. 1971;34(1):51–72. doi: 10.1007/BF00285516. [DOI] [PubMed] [Google Scholar]
  8. Comings D. E., Avelino E., Okada T. A., Wyandt H. E. The mechanism of C- and G-banding of chromosomes. Exp Cell Res. 1973 Mar 15;77(1):469–483. doi: 10.1016/0014-4827(73)90601-0. [DOI] [PubMed] [Google Scholar]
  9. Diaz M. O., Barsacchi-Pilone G., Mahon K. A., Gall J. G. Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt Notophthalmus. Cell. 1981 Jun;24(3):649–659. doi: 10.1016/0092-8674(81)90091-x. [DOI] [PubMed] [Google Scholar]
  10. Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
  11. Gerhard D. S., Kawasaki E. S., Bancroft F. C., Szabo P. Localization of a unique gene by direct hybridization in situ. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3755–3759. doi: 10.1073/pnas.78.6.3755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Godard C., Jones K. W. Detection of AKR MuLV-specific RNA in AKR mouse cells by in situ hybridization. Nucleic Acids Res. 1979 Jun 25;6(8):2849–2861. doi: 10.1093/nar/6.8.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haigwood N. L., Jahn C. L., Hutchison C. A., 3rd, Edgell M. H. Locations of three repetitive sequence families found in BALB/c adult beta-globin clones. Nucleic Acids Res. 1981 Mar 11;9(5):1133–1150. doi: 10.1093/nar/9.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harper M. E., Saunders G. F. Localization of single copy DNA sequences of G-banded human chromosomes by in situ hybridization. Chromosoma. 1981;83(3):431–439. doi: 10.1007/BF00327364. [DOI] [PubMed] [Google Scholar]
  15. Hayashi S., Gillam I. C., Delaney A. D., Tener G. M. Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiographs from hybridization with [125I]-labeled RNA. J Histochem Cytochem. 1978 Aug;26(8):677–679. doi: 10.1177/26.8.99471. [DOI] [PubMed] [Google Scholar]
  16. Heggeness M. H. Avidin binds to condensed chromatin. Stain Technol. 1977 May;52(3):165–169. doi: 10.3109/10520297709116769. [DOI] [PubMed] [Google Scholar]
  17. Heneen W. K., Nichols W. W. Nonrandom arrangement of metaphase chromosomes in cultured cells of the Indian deer, Muntiacus muntjak. Cytogenetics. 1972;11(3):153–164. doi: 10.1159/000130185. [DOI] [PubMed] [Google Scholar]
  18. Hilwig I., Gropp A. Decondensation of constitutive heterochromatin in L cell chromosomes by a benzimidazole compound ("33258 Hoechst"). Exp Cell Res. 1973 Oct;81(2):474–477. doi: 10.1016/0014-4827(73)90537-5. [DOI] [PubMed] [Google Scholar]
  19. Hilwig I., Gropp A. Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp Cell Res. 1972 Nov;75(1):122–126. doi: 10.1016/0014-4827(72)90527-7. [DOI] [PubMed] [Google Scholar]
  20. Holmquist G. P., Comings D. E. Sister chromatid exchange and chromosome organization based on a bromodeoxyuridine Giemsa-C-banding technique (TC-banding). Chromosoma. 1975 Oct 14;52(3):245–259. doi: 10.1007/BF00332114. [DOI] [PubMed] [Google Scholar]
  21. Jacob J., Gillies K., Macleod D., Jones K. W. Molecular hybridization of mouse satellite DNA-complementary RNA in ultrathin sections prepared for electron microscopy. J Cell Sci. 1974 Mar;14(2):253–261. doi: 10.1242/jcs.14.2.253. [DOI] [PubMed] [Google Scholar]
  22. Jacob J. The practice and application of electron microscope autoradiography. Int Rev Cytol. 1971;30:91–181. doi: 10.1016/s0074-7696(08)60047-9. [DOI] [PubMed] [Google Scholar]
  23. Jones K. W. Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature. 1970 Mar 7;225(5236):912–915. doi: 10.1038/225912a0. [DOI] [PubMed] [Google Scholar]
  24. Langer-Safer P. R., Levine M., Ward D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4381–4385. doi: 10.1073/pnas.79.14.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Manning J. E., Hershey N. D., Broker T. R., Pellegrini M., Mitchell H. K., Davidson N. A new method of in situ hybridization. Chromosoma. 1975 Nov 24;53(2):107–117. doi: 10.1007/BF00333039. [DOI] [PubMed] [Google Scholar]
  27. Miller O. L., Jr, Beatty B. R. Visualization of nucleolar genes. Science. 1969 May 23;164(3882):955–957. doi: 10.1126/science.164.3882.955. [DOI] [PubMed] [Google Scholar]
  28. Morgan G. T., Macgregor H. C., Colman A. Multiple ribosomal gene sites revealed by in situ hybridization of Xenopus rDNA to Triturus lampbrush chromosomes. Chromosoma. 1980;80(3):309–330. doi: 10.1007/BF00292687. [DOI] [PubMed] [Google Scholar]
  29. Old R. W., Callan G. H., Gross K. W. Localization of histone gene transcripts in newt lampbrush chromosomes by in situ hybridization. J Cell Sci. 1977;27:57–79. doi: 10.1242/jcs.27.1.57. [DOI] [PubMed] [Google Scholar]
  30. Pardue M. L., Gall J. G. Chromosomal localization of mouse satellite DNA. Science. 1970 Jun 12;168(3937):1356–1358. doi: 10.1126/science.168.3937.1356. [DOI] [PubMed] [Google Scholar]
  31. Pardue M. L., Gall J. G. Nucleic acid hybridization to the DNA of cytological preparations. Methods Cell Biol. 1975;10:1–16. doi: 10.1016/s0091-679x(08)60727-x. [DOI] [PubMed] [Google Scholar]
  32. Pukkila P. J. Identification of the lampbrush chromosome loops which transcribe 5S ribosomal RNA in Notophthalmus (Triturus) viridescens. Chromosoma. 1975 Nov 20;53(1):71–89. doi: 10.1007/BF00329391. [DOI] [PubMed] [Google Scholar]
  33. Rae M. M., Franke W. W. The interphase distribution of satellite DNA-containing heterochromatin in mouse nuclei. Chromosoma. 1972;39(4):443–456. doi: 10.1007/BF00326177. [DOI] [PubMed] [Google Scholar]
  34. Rattner J. B., Branch A., Hamkalo B. A. Electron microscopy of whole mount metaphase chromosomes. Chromosoma. 1975 Nov 11;52(4):329–338. doi: 10.1007/BF00364017. [DOI] [PubMed] [Google Scholar]
  35. Rattner J. B., Krystal G., Hamkalo B. A. Selective digestion of mouse metaphase chromosomes. Chromosoma. 1978 Apr 25;66(3):259–268. doi: 10.1007/BF00330554. [DOI] [PubMed] [Google Scholar]
  36. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  37. Rowley J. D., Bodmer W. F. Relationship of centromeric heterochromatin to fluorescent banding patterns of metaphase chromosomes in the mouse. Nature. 1971 Jun 25;231(5304):503–506. doi: 10.1038/231503a0. [DOI] [PubMed] [Google Scholar]
  38. Rudkin G. T., Stollar B. D. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature. 1977 Feb 3;265(5593):472–473. doi: 10.1038/265472a0. [DOI] [PubMed] [Google Scholar]
  39. Singh L., Purdom I. F., Jones K. W. Effect of different denaturing agents on the detectability of specific DNA sequences of various base compositions by in situ hybridisation. Chromosoma. 1977 Apr 20;60(4):377–389. doi: 10.1007/BF00292860. [DOI] [PubMed] [Google Scholar]
  40. Stuart W. D., Bishop J. G., Carson H. L., Frank M. B. Location of the 18/28S ribosomal RNA genes in two Hawaiian Drosophila species by monoclonal immunological identification of RNA.DNA hybrids in situ. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3751–3754. doi: 10.1073/pnas.78.6.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stuart W. D., Porter D. L. An improved in situ hybridization method. Exp Cell Res. 1978 Apr;113(1):218–222. doi: 10.1016/0014-4827(78)90105-2. [DOI] [PubMed] [Google Scholar]
  42. Tereba A., Lai M. M., Murti K. G. Chromosome 1 contains the endogenous RAV-0 retrovirus sequences in chicken cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6486–6490. doi: 10.1073/pnas.76.12.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Varley J. M., Macgregor H. C., Erba H. P. Satellite DNA is transcribed on lampbrush chromosomes. Nature. 1980 Feb 14;283(5748):686–688. doi: 10.1038/283686a0. [DOI] [PubMed] [Google Scholar]
  44. Varley J. M., Macgregor H. C., Nardi I., Andrews C., Erba H. P. Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage in Triturus cristatus carnifex. Chromosoma. 1980;80(3):289–307. doi: 10.1007/BF00292686. [DOI] [PubMed] [Google Scholar]
  45. Venezky D. L., Angerer L. M., Angerer R. C. Accumulation of histone repeat transcripts in the sea urchin egg pronucleus. Cell. 1981 May;24(2):385–391. doi: 10.1016/0092-8674(81)90328-7. [DOI] [PubMed] [Google Scholar]
  46. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. White R., Pasztor L. M., Hu F. Mouse satellite DMA in noncentromeric heterochromatin of cultured cells. Chromosoma. 1975;50(3):275–282. doi: 10.1007/BF00283471. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES