Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jan 1;98(1):16–21. doi: 10.1083/jcb.98.1.16

Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis

PMCID: PMC2112999  PMID: 6546761

Abstract

How terminally differentiating cells are selectively expelled from the basal layer of epidermis has been a source of interest and speculation for many years. The problem can now be studied in culture, using involucrin synthesis as an early marker of terminal differentiation in human keratinocytes. When keratinocytes are forced to grow as a monolayer by reducing the calcium ion concentration of the culture medium, they still begin to synthesize involucrin. Raising the level of calcium ions induces stratification, and cells that are synthesizing involucrin are selectively expelled from the basal layer. I have found that during calcium-induced stratification no new proteins or glycoproteins are synthesized, and the rate of cell division does not change. Movement of involucrin-positive cells out of the basal layer was found to be unaffected by cycloheximide, tunicamycin, or cytosine arabinoside. These results suggest that keratinocytes growing as a monolayer already have the necessary properties to determine their position when stratification is induced. Addition of calcium simply allows formation of desmosomes and other intimate cell contacts required for stratification. The properties of involucrin-positive cells that determine their suprabasal position include a reduced affinity for the culture substrate and preferential adhesion to other cells at the same stage of terminal differentiation. The molecular basis of these adhesive changes is discussed.

Full Text

The Full Text of this article is available as a PDF (957.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks-Schlegel S., Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981 Sep;90(3):732–737. doi: 10.1083/jcb.90.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Brennan J. K., Mansky J., Roberts G., Lichtman M. A. Improved methods for reducing calcium and magnesium concentrations in tissue culture medium: application to studies of lymphoblast proliferation in vitro. In Vitro. 1975 Nov-Dec;11(6):354–360. doi: 10.1007/BF02616371. [DOI] [PubMed] [Google Scholar]
  4. Cozzarelli N. R. The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem. 1977;46:641–668. doi: 10.1146/annurev.bi.46.070177.003233. [DOI] [PubMed] [Google Scholar]
  5. Doran T. I., Vidrich A., Sun T. T. Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell. 1980 Nov;22(1 Pt 1):17–25. doi: 10.1016/0092-8674(80)90150-6. [DOI] [PubMed] [Google Scholar]
  6. Edelman G. M., Rutishauser U. Molecules involved in cell--cell adhesion during development. J Supramol Struct Cell Biochem. 1981;16(3):259–268. doi: 10.1002/jsscb.1981.380160306. [DOI] [PubMed] [Google Scholar]
  7. Etoh H., Taguchi Y., Tabachnick J. Movement of beta-irradiated epidermal basal cells to the spinous-granular layers in the absence of cell division. J Invest Dermatol. 1975 Jun;64(6):431–435. doi: 10.1111/1523-1747.ep12512402. [DOI] [PubMed] [Google Scholar]
  8. Gray G. M., King I. A., Yardley H. J. The plasma membrane of Malpighian cells from pig epidermis: isolation and lipid and protein composition. Br J Dermatol. 1980 Nov;103(5):505–515. doi: 10.1111/j.1365-2133.1980.tb01665.x. [DOI] [PubMed] [Google Scholar]
  9. Gray G. M., King I. A., Yardley H. J. The plasma membrane of granular cells from pig epidermis: isolation and lipid and protein composition. J Invest Dermatol. 1978 Aug;71(2):131–135. doi: 10.1111/1523-1747.ep12546728. [DOI] [PubMed] [Google Scholar]
  10. Green H. Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell. 1978 Nov;15(3):801–811. doi: 10.1016/0092-8674(78)90265-9. [DOI] [PubMed] [Google Scholar]
  11. Green H. The keratinocyte as differentiated cell type. Harvey Lect. 1980;74:101–139. [PubMed] [Google Scholar]
  12. Hennings H., Holbrook K. A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res. 1983 Jan;143(1):127–142. doi: 10.1016/0014-4827(83)90115-5. [DOI] [PubMed] [Google Scholar]
  13. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  14. Klein-Szanto A. J. Stereologic baseline data of normal human epidermis. J Invest Dermatol. 1977 Feb;68(2):73–78. doi: 10.1111/1523-1747.ep12491611. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  17. Lavker R. M., Sun T. T. Rapid modulation of keratinocyte differentiation by the external environment. J Invest Dermatol. 1983 Apr;80(4):228–237. doi: 10.1111/1523-1747.ep12534527. [DOI] [PubMed] [Google Scholar]
  18. MOSCONA A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961 Jan;22:455–475. doi: 10.1016/0014-4827(61)90122-7. [DOI] [PubMed] [Google Scholar]
  19. Meldolesi J., Castiglioni G., Parma R., Nassivera N., De Camilli P. Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs. J Cell Biol. 1978 Oct;79(1):156–172. doi: 10.1083/jcb.79.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peehl D. M., Stanbridge E. J. The role of differentiation in the suppression of tumorigenicity in human cell hybrids. Int J Cancer. 1982 Jul 15;30(1):113–120. doi: 10.1002/ijc.2910300119. [DOI] [PubMed] [Google Scholar]
  21. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  22. Rheinwald J. G. Serial cultivation of normal human epidermal keratinocytes. Methods Cell Biol. 1980;21A:229–254. doi: 10.1016/s0091-679x(08)60769-4. [DOI] [PubMed] [Google Scholar]
  23. Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
  24. SEDAR A. W., FORTE J. G. EFFECTS OF CALCIUM DEPLETION ON THE JUNCTIONAL COMPLEX BETWEEN OXYNTIC CELLS OF GASTRIC GLANDS. J Cell Biol. 1964 Jul;22:173–188. doi: 10.1083/jcb.22.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Springer W. R., Barondes S. H. Evidence for another cell-adhesion molecule in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6561–6565. doi: 10.1073/pnas.79.21.6561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Struck D. K., Lennarz W. J. Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin. J Biol Chem. 1977 Feb 10;252(3):1007–1013. [PubMed] [Google Scholar]
  27. Warner J. R., Girard M., Latham H., Darnell J. E. Ribosome formation in HeLa cells in the absence of protein synthesis. J Mol Biol. 1966 Aug;19(2):373–382. doi: 10.1016/s0022-2836(66)80011-6. [DOI] [PubMed] [Google Scholar]
  28. Watt F. M., Green H. Involucrin synthesis is correlated with cell size in human epidermal cultures. J Cell Biol. 1981 Sep;90(3):738–742. doi: 10.1083/jcb.90.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watt F. M., Green H. Stratification and terminal differentiation of cultured epidermal cells. Nature. 1982 Feb 4;295(5848):434–436. doi: 10.1038/295434a0. [DOI] [PubMed] [Google Scholar]
  30. Zieske J. D., Bernstein I. A. Modification of cell surface glycoprotein: addition of fucosyl residues during epidermal differentiation. J Cell Biol. 1982 Nov;95(2 Pt 1):626–631. doi: 10.1083/jcb.95.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES