Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jan 1;98(1):347–351. doi: 10.1083/jcb.98.1.347

Immunocytochemical demonstration of alpha-tubulin modification during axonal maturation in the cerebellar cortex

PMCID: PMC2113003  PMID: 6707095

Abstract

Previous light microscopic immunocytochemical studies using two monoclonal antibodies that recognise alpha-tubulin (YOL/34 and YL1/2) but differ in their isotypic specificity have shown that the unmyelinated parallel fiber axons in the cerebellar cortex are labeled with only one of the antibodies (YOL/34). We now show that at 10 d postnatally the parallel fibers are labeled with both antibodies, and that during development YL1/2 (but not YOL/34) immunoreactivity disappears progressively from parallel fibers in the lower regions of the molecular layer upwards towards the external germinal layer. By approximately 28 d postnatally, the differential staining pattern of parallel fibers by the antibodies is established throughout the molecular layer. The time course, light microscopic, and ultrastructural staining distribution corresponds to a progressive change in alpha-tubulin immunoreactivity as the parallel fibers form synaptic contacts. This modification of alpha-tubulin (which was not observed in Purkinje cell dendrites or Bergmann glia) may be related to the formation of a basic isotype of alpha-tubulin within parallel fiber axons at maturation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J. Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer. J Comp Neurol. 1972 Aug;145(4):465–513. doi: 10.1002/cne.901450403. [DOI] [PubMed] [Google Scholar]
  2. Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol. 1972 Jul;145(3):353–397. doi: 10.1002/cne.901450305. [DOI] [PubMed] [Google Scholar]
  3. Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol. 1972 Aug;145(4):399–463. doi: 10.1002/cne.901450402. [DOI] [PubMed] [Google Scholar]
  4. Bernhardt R., Matus A. Initial phase of dendrite growth: evidence for the involvement of high molecular weight microtubule-associated proteins (HMWP) before the appearance of tubulin. J Cell Biol. 1982 Feb;92(2):589–593. doi: 10.1083/jcb.92.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown B. A., Nixon R. A., Marotta C. A. Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons. J Cell Biol. 1982 Jul;94(1):159–164. doi: 10.1083/jcb.94.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgoyne R. D., Cumming R. Characterisation of microtubule-associated proteins at the synapse: absence of MAP 2. Eur J Cell Biol. 1983 May;30(2):154–158. [PubMed] [Google Scholar]
  7. Cumming R., Burgoyne R. D., Lytton N. A. Axonal sub-populations in the central nervous system demonstrated using monoclonal antibodies against alpha-tubulin. Eur J Cell Biol. 1983 Sep;31(2):241–248. [PubMed] [Google Scholar]
  8. Cumming R., Burgoyne R. D., Lytton N. A. Differential immunocytochemical localisation of alpha-tubulin and beta-tubulin in cerebellum using monoclonal antibodies. Cell Biol Int Rep. 1982 Nov;6(11):1047–1053. doi: 10.1016/0309-1651(82)90021-2. [DOI] [PubMed] [Google Scholar]
  9. Cumming R., Burgoyne R. D., Lytton N. A., Gray E. G. Immunocytochemical evidence for tubulin in the presynaptic terminal of synaptosomes. Neurosci Lett. 1983 Jun 30;37(3):215–220. doi: 10.1016/0304-3940(83)90433-0. [DOI] [PubMed] [Google Scholar]
  10. Gozes I., Barnstable C. J. Monoclonal antibodies that recognize discrete forms of tubulin. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2579–2583. doi: 10.1073/pnas.79.8.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gozes I., Littauer U. Z. Tubulin microheterogeneity increases with rat brain maturation. Nature. 1978 Nov 23;276(5686):411–413. doi: 10.1038/276411a0. [DOI] [PubMed] [Google Scholar]
  12. Gozes I., Sweadner K. J. Multiple tubulin forms are expressed by a single neurone. Nature. 1981 Dec 3;294(5840):477–480. doi: 10.1038/294477a0. [DOI] [PubMed] [Google Scholar]
  13. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lasek R. J., Brady S. T. The axon: a prototype for studying expressional cytoplasm. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):113–124. doi: 10.1101/sqb.1982.046.01.015. [DOI] [PubMed] [Google Scholar]
  15. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wehland J., Henkart M., Klausner R., Sandoval I. V. Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-alpha-tubulin antibodies. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4286–4290. doi: 10.1073/pnas.80.14.4286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zanetta J. P., Roussel G., Ghandour M. S., Vincendon G., Gombos G. Postnatal development of rat cerebellum: massive and transient accumulation of concanavalin A binding glycoproteins in parallel fiber axolemma. Brain Res. 1978 Feb 24;142(2):301–319. doi: 10.1016/0006-8993(78)90637-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES