Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jan 1;98(1):267–276. doi: 10.1083/jcb.98.1.267

Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure--implications for the theories of mineralization and vascular invasion

PMCID: PMC2113010  PMID: 6707090

Abstract

Electron microscopic examination of epiphyseal cartilage tissue processed by high pressure freezing, freeze substitution, and low temperature embedding revealed a substantial improvement in the preservation quality of intracellular organelles by comparison with the results obtained under conventional chemical fixation conditions. Furthermore, all cells throughout the epiphyseal plate, including the terminal chondrocyte adjacent to the region of vascular invasion, were found to be structurally integral. A zone of degenerating cells consistently observed in cartilage tissue processed under conventional chemical fixation conditions was not apparent. Hence, it would appear that cell destruction in this region occurs during chemical processing and is not a feature of cartilage tissue in the native state. Since these cells are situated in a region where tissue calcification is taking place, the implication is that the onset and progression of cartilage calcification are, at least partially, controlled by the chondrocytes themselves. The observation that the terminal cell adjacent to the zone of vascular invasion is viable has important implications in relation to the theory of vascular invasion. This may now require reconceptualization to accommodate the possibility that active cell destruction may be a precondition for vascular invasion.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcock N. W. Calcification of cartilage. Clin Orthop Relat Res. 1972 Jul-Aug;86:287–311. doi: 10.1097/00003086-197207000-00040. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. E., Parker J. Electron microscopy of the epiphyseal cartilage plate. A critical review of electron microscopy observations on enchondral ossification. Clin Orthop Relat Res. 1968 May-Jun;58:225–241. [PubMed] [Google Scholar]
  3. Appleton T. C. A cryostat approach to ultrathin "dry" frozen sections for electron microscopy: a morphological and x-ray analytical study. J Microsc. 1974 Jan;100(1):49–74. doi: 10.1111/j.1365-2818.1974.tb03913.x. [DOI] [PubMed] [Google Scholar]
  4. Arancia G., Valente F. R., Crateri P. T. Effects of glutaraldehyde and glycerol on freeze-fractured Escherichia coli. J Microsc. 1980 Feb;118(2):161–176. doi: 10.1111/j.1365-2818.1980.tb00259.x. [DOI] [PubMed] [Google Scholar]
  5. Armbruster B. L., Carlemalm E., Chiovetti R., Garavito R. M., Hobot J. A., Kellenberger E., Villiger W. Specimen preparation for electron microscopy using low temperature embedding resins. J Microsc. 1982 Apr;126(Pt 1):77–85. doi: 10.1111/j.1365-2818.1982.tb00358.x. [DOI] [PubMed] [Google Scholar]
  6. Boskey A. L. Current concepts of the physiology and biochemistry of calcification. Clin Orthop Relat Res. 1981 Jun;(157):225–257. [PubMed] [Google Scholar]
  7. Brighton C. T., Hunt R. M. Histochemical localization of calcium in growth plate mitochondria and matrix vesicles. Fed Proc. 1976 Feb;35(2):143–147. [PubMed] [Google Scholar]
  8. Brighton C. T. Structure and function of the growth plate. Clin Orthop Relat Res. 1978 Oct;(136):22–32. [PubMed] [Google Scholar]
  9. Christensen A. K. Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J Cell Biol. 1971 Dec;51(3):772–804. doi: 10.1083/jcb.51.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Connor W., Ashwood-Smith M. J. Cryoprotection of mammalian cells in tissue culture with polymers; possible mechanisms. Cryobiology. 1973 Dec;10(6):488–496. doi: 10.1016/s0011-2240(73)80002-1. [DOI] [PubMed] [Google Scholar]
  11. Cooper E. H. The biology of cell death in tumours. Cell Tissue Kinet. 1973 Jan;6(1):87–95. doi: 10.1111/j.1365-2184.1973.tb01597.x. [DOI] [PubMed] [Google Scholar]
  12. Costello M. J., Corless J. M. The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants. J Microsc. 1978 Jan;112(1):17–37. doi: 10.1111/j.1365-2818.1978.tb01151.x. [DOI] [PubMed] [Google Scholar]
  13. Crelin E. S., Koch W. E. An autoradiographic study of chondrocyte transformation into chondroclasts and osteocytes during bone formation in vitro. Anat Rec. 1967 Aug;158(4):473–483. doi: 10.1002/ar.1091580410. [DOI] [PubMed] [Google Scholar]
  14. Dempsey G. P., Bullivant S. A copper block method for freezing non-cryoprotected tissue to produce ice-crystal-free regions for electron microscopy. I. Evaluation using freeze-substitution. J Microsc. 1976 Apr;106(3):251–260. doi: 10.1111/j.1365-2818.1976.tb02405.x. [DOI] [PubMed] [Google Scholar]
  15. Douzou P. Enzymology at sub-zero temperatures. Mol Cell Biochem. 1973 May 11;1(1):15–27. doi: 10.1007/BF01659935. [DOI] [PubMed] [Google Scholar]
  16. Elder H. Y., Gray C. C., Jardine A. G., Chapman J. N., Biddlecombe W. H. Optimum conditions for cryoquenching of small tissue blocks in liquid coolants. J Microsc. 1982 Apr;126(Pt 1):45–61. doi: 10.1111/j.1365-2818.1982.tb00356.x. [DOI] [PubMed] [Google Scholar]
  17. Engfeldt B., Hjertquist S. O. Studies on the epiphysial growth zone. I. The preservation of acid glycosaminoglycans in tissues in some histotechnical procedures for electron microscopy. Virchows Arch B Cell Pathol. 1968;1(3):222–229. [PubMed] [Google Scholar]
  18. Engfeldt B. Studies on the epiphysial growth zone. 3. Electronmicroscopic studies on the normal epiphysial growth zone. Acta Pathol Microbiol Scand. 1969;75(2):201–219. [PubMed] [Google Scholar]
  19. Farrant J., Walter C. A., Lee H., Morris G. J., Clarke K. J. Structural and functional aspects of biological freezing techniques. J Microsc. 1977 Sep;111(1):17–34. doi: 10.1111/j.1365-2818.1977.tb00044.x. [DOI] [PubMed] [Google Scholar]
  20. Franks F., Asquith M. H., Hammond C. C., Skaer H. B., Echlin P. Polymer cryoprotectants in the preservation of biological ultrastructure. I. Low temperature states of aqueous solutions of hydrophilic polymers. J Microsc. 1977 Aug;110(3):223–228. doi: 10.1111/j.1365-2818.1977.tb00034.x. [DOI] [PubMed] [Google Scholar]
  21. Franks F. Biological freezing and cryofixation. J Microsc. 1977 Sep;111(1):3–16. doi: 10.1111/j.1365-2818.1977.tb00042.x. [DOI] [PubMed] [Google Scholar]
  22. Frey T., Petty H. R., McConnell H. M. Electron microscopic study of natural killer cell-tumor cell conjugates. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5317–5321. doi: 10.1073/pnas.79.17.5317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. HAM A. W. Some histophysiological problems peculiar to calcified tissues. J Bone Joint Surg Am. 1952 Jul;24 A(3):701–728. [PubMed] [Google Scholar]
  24. Hanaoka H. The fate of hypertrophic chondrocytes of the epiphyseal plate. An electron microscopic study. J Bone Joint Surg Am. 1976 Mar;58(2):226–229. [PubMed] [Google Scholar]
  25. Harvey D. M. Freeze-substitution. J Microsc. 1982 Aug;127(Pt 2):209–221. doi: 10.1111/j.1365-2818.1982.tb00414.x. [DOI] [PubMed] [Google Scholar]
  26. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Holtrop M. E. The ultrastructure of the epiphyseal plate. II. The hypertrophic chondrocyte. Calcif Tissue Res. 1972;9(2):140–151. doi: 10.1007/BF02061952. [DOI] [PubMed] [Google Scholar]
  28. Howard R. J., Aist J. R. Hyphal tip cell ultrastructure of the fungus Fusarium: improved preservation by freeze-substitution. J Ultrastruct Res. 1979 Mar;66(3):224–234. doi: 10.1016/s0022-5320(79)90120-5. [DOI] [PubMed] [Google Scholar]
  29. Hunziker E. B., Herrmann W., Schenk R. K. Improved cartilage fixation by ruthenium hexammine trichloride (RHT). A prerequisite for morphometry in growth cartilage. J Ultrastruct Res. 1982 Oct;81(1):1–12. doi: 10.1016/s0022-5320(82)90036-3. [DOI] [PubMed] [Google Scholar]
  30. Hunziker E. B., Herrmann W., Schenk R. K. Ruthenium hexammine trichloride (RHT)-mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocytic plasma membranes in situ during cartilage fixation. J Histochem Cytochem. 1983 Jun;31(6):717–727. doi: 10.1177/31.6.6341460. [DOI] [PubMed] [Google Scholar]
  31. Jasin H. E., Dingle J. T. Human mononuclear cell factors mediate cartilage matrix degradation through chondrocyte activation. J Clin Invest. 1981 Sep;68(3):571–581. doi: 10.1172/JCI110290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kanno H., Speedy R. J., Angell C. A. Supercooling of Water to -92{degrees}C Under Pressure. Science. 1975 Sep 12;189(4206):880–881. doi: 10.1126/science.189.4206.880. [DOI] [PubMed] [Google Scholar]
  33. Kashiwa H. K., Luchtel D. L., Park H. Z. Chondroitin sulfate and electron lucent bodies in the pericellular rim about unshrunken hypertrophied chondrocytes of chick long bone. Anat Rec. 1975 Nov;183(3):359–372. doi: 10.1002/ar.1091830302. [DOI] [PubMed] [Google Scholar]
  34. Kay M. M. Isolation of the phagocytosis-inducing IgG-binding antigen on senescent somatic cells. Nature. 1981 Feb 5;289(5797):491–494. doi: 10.1038/289491a0. [DOI] [PubMed] [Google Scholar]
  35. Landis W. J., Glimcher M. J. Electron optical and analytical observations of rat growth plate cartilage prepared by ultracryomicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid phase of calcium phosphate deposited in the extracellular matrix. J Ultrastruct Res. 1982 Mar;78(3):227–268. doi: 10.1016/s0022-5320(82)80001-4. [DOI] [PubMed] [Google Scholar]
  36. Lenard J., Singer S. J. Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J Cell Biol. 1968 Apr;37(1):117–121. doi: 10.1083/jcb.37.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lynn W. S., Mukherjee C. Proteoglycans, proteases, chemotaxis, and aggregation of inflammatory, cells. Infect Immun. 1979 Jan;23(1):14–18. doi: 10.1128/iai.23.1.14-18.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mankin H. J., Revak C., Lippiello L. Ribonucleic acid synthesis in the epiphyseal plate of the rat: an autoradiographic study. Bull Hosp Joint Dis. 1968 Oct;29(2):111–118. [PubMed] [Google Scholar]
  39. Martin J. H., Matthews J. L. Mitochondrial granules in chondrocytes. Calcif Tissue Res. 1969;3(2):184–193. doi: 10.1007/BF02058661. [DOI] [PubMed] [Google Scholar]
  40. Moor H., Bellin G., Sandri C., Akert K. The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res. 1980;209(2):201–216. doi: 10.1007/BF00237626. [DOI] [PubMed] [Google Scholar]
  41. Moor H. Recent progress in the freeze-etching technique. Philos Trans R Soc Lond B Biol Sci. 1971 May 27;261(837):121–131. doi: 10.1098/rstb.1971.0042. [DOI] [PubMed] [Google Scholar]
  42. Müller M., Meister N., Moor H. Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie. 1980 Sep;36(5-6):129–140. [PubMed] [Google Scholar]
  43. Nathan C. F., Murray H. W., Cohn Z. A. The macrophage as an effector cell. N Engl J Med. 1980 Sep 11;303(11):622–626. doi: 10.1056/NEJM198009113031106. [DOI] [PubMed] [Google Scholar]
  44. Ornberg R. L., Reese T. S. A freeze-substitution method for localizing divalent cations: examples from secretory systems. Fed Proc. 1980 Aug;39(10):2802–2808. [PubMed] [Google Scholar]
  45. Pease D. C. Eutectic ethylene glycol and pure propylene glycol as substituting media for the dehydration of frozen tissue. J Ultrastruct Res. 1967 Nov;21(1):75–97. doi: 10.1016/s0022-5320(67)80007-8. [DOI] [PubMed] [Google Scholar]
  46. Petsko G. A. Protein crystallography at sub-zero temperatures: cryo-protective mother liquors for protein crystals. J Mol Biol. 1975 Aug 15;96(3):381–392. doi: 10.1016/0022-2836(75)90167-9. [DOI] [PubMed] [Google Scholar]
  47. Podack E. R., Biesecker G., Müller-Eberhard H. J. Membrane attack complex of complement: generation of high-affinity phospholipid binding sites by fusion of five hydrophilic plasma proteins. Proc Natl Acad Sci U S A. 1979 Feb;76(2):897–901. doi: 10.1073/pnas.76.2.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. ROBINSON R. A., CAMERON D. A. The organic matrix of bone and epiphyseal cartilage. Clin Orthop. 1957;9:16–29. [PubMed] [Google Scholar]
  49. Reinholt F. P., Engfeldt B., Hjerpe A., Jansson K. Stereological studies on the epiphyseal growth plate with special reference to the distribution of matrix vesicles. J Ultrastruct Res. 1982 Sep;80(3):270–279. doi: 10.1016/s0022-5320(82)80040-3. [DOI] [PubMed] [Google Scholar]
  50. Rent R., Ertel N., Eisenstein R., Gewurz H. Complement activation by interaction of polyanions and polycations. I. Heparin-protamine induced consumption of complement. J Immunol. 1975 Jan;114(1 Pt 1):120–124. [PubMed] [Google Scholar]
  51. Rodan G. A., Bourret L. A., Cutler L. S. Membrane changes during cartilage maturation. Increase in 5'-nucleotidase and decrease in adenosine inhibition of adenylate cyclase. J Cell Biol. 1977 Feb;72(2):493–501. doi: 10.1083/jcb.72.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981 May;29(5):663–671. doi: 10.1177/29.5.6166664. [DOI] [PubMed] [Google Scholar]
  53. Savostin-Asling I., Asling C. W. Transmission and scanning electron microscope studies of calcified cartilage resorption. Anat Rec. 1975 Nov;183(3):373–391. doi: 10.1002/ar.1091830303. [DOI] [PubMed] [Google Scholar]
  54. Schenk R. K., Spiro D., Wiener J. Cartilage resorption in the tibial epiphyseal plate of growing rats. J Cell Biol. 1967 Jul;34(1):275–291. doi: 10.1083/jcb.34.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Silvestri L., Baker J. R., Rodén L., Stroud R. M. The C1q inhibitor in serum is a chondroitin 4-sulfate proteoglycan. J Biol Chem. 1981 Jul 25;256(14):7383–7387. [PubMed] [Google Scholar]
  56. Sorrell J. M., Weiss L. A light and electron microscopic study of the region of cartilage resorption in the embryonic chick femur. Anat Rec. 1980 Nov;198(3):513–530. doi: 10.1002/ar.1091980312. [DOI] [PubMed] [Google Scholar]
  57. Stambaugh J. E., Brighton C. T. Diffusion in the various zones of the normal and the rachitic growth plate. J Bone Joint Surg Am. 1980 Jul;62(5):740–749. [PubMed] [Google Scholar]
  58. Stillinger F. H. Water revisited. Science. 1980 Jul 25;209(4455):451–457. doi: 10.1126/science.209.4455.451. [DOI] [PubMed] [Google Scholar]
  59. TANFORD C., BUCKLEY C. E., 3rd, DE P. K., LIVELY E. P. Effect of ethylene glycol on the conformation of gama-globulin and beta-lactoglobulin. J Biol Chem. 1962 Apr;237:1168–1171. [PubMed] [Google Scholar]
  60. TAYLOR A. C. The physical state transition in the freezing of living cells. Ann N Y Acad Sci. 1960 Apr 13;85:595–609. doi: 10.1111/j.1749-6632.1960.tb49985.x. [DOI] [PubMed] [Google Scholar]
  61. VANHARREVELD A., CROWELL J., MALHOTRA S. K. A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION. J Cell Biol. 1965 Apr;25:117–137. doi: 10.1083/jcb.25.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Van Harreveld A., Trubatch J., Steiner J. Rapid freezing and electron microscopy for the arrest of physiological processes. J Microsc. 1974 Mar;100(2):189–198. doi: 10.1111/j.1365-2818.1974.tb03928.x. [DOI] [PubMed] [Google Scholar]
  63. Van Venrooij G. E., Aertsen A. M., Hax W. M., Ververgaert P. H., Verhoeven J. J., Van der Vorst H. A. Freeze-etching: freezing velocity and crystal size at different locations in samples. Cryobiology. 1975 Feb;12(1):46–61. doi: 10.1016/0011-2240(75)90040-1. [DOI] [PubMed] [Google Scholar]
  64. Weibull C., Carlemalm E., Villiger W., Kellenberger E., Fakan J., Gautier A., Larsson C. Low-temperature embedding procedures applied to chloroplasts. J Ultrastruct Res. 1980 Nov;73(2):233–244. doi: 10.1016/s0022-5320(80)90126-4. [DOI] [PubMed] [Google Scholar]
  65. Wuthier R. E. A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitochondria and matrix vesicles. Clin Orthop Relat Res. 1982 Sep;(169):219–242. [PubMed] [Google Scholar]
  66. Zalokar M. A simple freeze-substitution method for electron microscopy. J Ultrastruct Res. 1966 Aug;15(5):469–479. doi: 10.1016/s0022-5320(66)80119-3. [DOI] [PubMed] [Google Scholar]
  67. da Silva P. P., Kachar B. Quick freezing vs. chemical fixation: capture and identification of membrane fusion intermediates. Cell Biol Int Rep. 1980 Jul;4(7):625–640. doi: 10.1016/0309-1651(80)90201-5. [DOI] [PubMed] [Google Scholar]
  68. de Ceulaer C., Papazoglou S., Whaley K. Increased biosynthesis of complement components by cultured monocytes, synovial fluid macrophages and skynovial membrane cells from patients with rheumatoid arthritis. Immunology. 1980 Sep;41(1):37–43. [PMC free article] [PubMed] [Google Scholar]
  69. van Venetië R., Hage W. J., Bluemink J. G., Verkleij A. J. Propane jet-freezing: a valid ultra-rapid freezing method for the preservation of temperature dependent lipid phases. J Microsc. 1981 Sep;123(Pt 3):287–292. doi: 10.1111/j.1365-2818.1981.tb02472.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES