Abstract
Concanavalin A (Con A)-induced anchorage of the major cell surface sialoglycoprotein component complex (ASGP-1/ASGP-2) was studied in 13762 rat mammary adenocarcinoma sublines with mobile (MAT-B1 subline) and immobile (MAT-C1 subline) cell surface Con A receptors. Treatment of cells, isolated microvilli, or microvillar membranes with Con A resulted in marked retention of ASGP-1 and ASGP-2, a Con A-binding protein, in cytoskeletal residues of both sublines obtained by extraction with Triton X-100 in PBS. When Con A-treated microvillar membranes were extracted with a buffer containing Triton X-100, the sialoglycoprotein complex was found associated in the residues with a transmembrane complex composed of actin, a 58,000-dalton polypeptide, and a cytoskeleton-associated glycoprotein (CAG), also a Con A-binding protein, in MAT-C1 membranes, and of actin and CAG in MAT-B1 membranes. Untreated membrane Triton residues retained very little ASGP-1/ASGP-2 complex. Association of the sialoglycomembrane complex and the transmembrane complex was also demonstrated in Con A-treated, but not untreated, microvilli by their comigration on CsCl gradients. Association of both complexes with the cytoskeleton of microvilli was shown by sucrose density gradient centrifugation. A fraction of the polymerized actin comigrated with the transmembrane complex alone in the absence of Con A and with both the transmembrane complex and the sialoglycoprotein complex in the presence of Con A. From these results we propose that anchorage of the sialoglycoprotein complex to the cytoskeleton on Con A treatment occurs by cross-linking ASGP-2, the major cell surface Con A-binding component, to CAG of the transmembrane complex, which is natively linked to the cytoskeleton via its actin component. Since Con A-induced anchorage occurs in sublines with mobile and immobile receptors, the anchorage process cannot be responsible for the differences in receptor mobility between the sublines.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett V., Stenbuck P. J. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979 Aug 9;280(5722):468–473. doi: 10.1038/280468a0. [DOI] [PubMed] [Google Scholar]
- Berlin R. D., Oliver J. M., Ukena T. E., Yin H. H. Control of cell surface topography. Nature. 1974 Jan 4;247(5435):45–46. doi: 10.1038/247045a0. [DOI] [PubMed] [Google Scholar]
- Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Carraway C. A., Cerra R. F., Bell P. B., Carraway K. L. Identification of a protein associated with both membrane and cytoskeleton fractions from branched but not unbranched microvilli of 13762 rat mammary adenocarcinoma ascites tumor sublines. Biochim Biophys Acta. 1982 Oct 28;719(1):126–139. doi: 10.1016/0304-4165(82)90316-6. [DOI] [PubMed] [Google Scholar]
- Carraway C. A., Jung G., Carraway K. L. Isolation of actin-containing transmembrane complexes from ascites adenocarcinoma sublines having mobile and immobile receptors. Proc Natl Acad Sci U S A. 1983 Jan;80(2):430–434. doi: 10.1073/pnas.80.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carraway C. A., Jung G., Craik J. R., Rubin R. W., Carraway K. L. Identification of a cytoskeleton-associated glycoprotein from isolated microvilli of a mammary ascites tumor. Exp Cell Res. 1983 Feb;143(2):303–308. doi: 10.1016/0014-4827(83)90055-1. [DOI] [PubMed] [Google Scholar]
- Carraway K. L., Cerra R. F., Jung G., Carraway C. A. Membrane-associated actin from the microvillar membranes of ascites tumor cells. J Cell Biol. 1982 Sep;94(3):624–630. doi: 10.1083/jcb.94.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carraway K. L., Doss R. C., Huggins J. W., Chesnut R. W., Carraway C. A. Effects of cytoskeletal perturbant drugs on ecto 5'-nucleotidase, a concanavalin A receptor. J Cell Biol. 1979 Dec;83(3):529–543. doi: 10.1083/jcb.83.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carraway K. L., Huggins J. W., Cerra R. F., Yeltman D. R., Carraway C. A. alpha-Actinin-containing branched microvilli isolated from an ascites adenocarcinoma. Nature. 1980 Jun 12;285(5765):508–510. doi: 10.1038/285508a0. [DOI] [PubMed] [Google Scholar]
- Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huggins J. W., Trenbeath T. P., Yeltman D. R., Carraway K. L. Restricted concanavalin A redistribution on the branched microvilli of an ascites tumor subline. Exp Cell Res. 1980 May;127(1):31–46. doi: 10.1016/0014-4827(80)90412-7. [DOI] [PubMed] [Google Scholar]
- King J., Laemmli U. K. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):465–477. doi: 10.1016/0022-2836(71)90148-3. [DOI] [PubMed] [Google Scholar]
- Leonardi C. L., Warren R. H., Rubin R. W. Lack of tropomyosin correlates with the absence of stress fibers in transformed rat kidney cells. Biochim Biophys Acta. 1982 Apr 29;720(2):154–162. doi: 10.1016/0167-4889(82)90007-6. [DOI] [PubMed] [Google Scholar]
- Moore P. B., Ownby C. L., Carraway K. L. Interactions of cytoskeletal elements with the plasma membrane of sarcoma180 ascites tumor cells. Exp Cell Res. 1978 Sep;115(2):331–342. doi: 10.1016/0014-4827(78)90287-2. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
- Oliver J. M., Berlin R. D. Mechanisms that regulate the structural and functional architecture of cell surfaces. Int Rev Cytol. 1982;74:55–94. doi: 10.1016/s0074-7696(08)61169-9. [DOI] [PubMed] [Google Scholar]
- Painter R. G., Ginsberg M. Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton. J Cell Biol. 1982 Feb;92(2):565–573. doi: 10.1083/jcb.92.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
- Sherblom A. P., Buck R. L., Carraway K. L. Purification of the major sialoglycoproteins of 13762 MAT-B1 and MAT-C1 rat ascites mammary adenocarcinoma cells by density gradient centrifugation in cesium chloride and guanidine hydrochloride. J Biol Chem. 1980 Jan 25;255(2):783–790. [PubMed] [Google Scholar]
- Sherblom A. P., Carraway K. L. A complex of two cell surface glycoproteins from ascites mammary adenocarcinoma cells. J Biol Chem. 1980 Dec 25;255(24):12051–12059. [PubMed] [Google Scholar]
- Sherblom A. P., Huggins J. W., Chesnut R. W., Buck R. L., Ownby C. L., Dermer G. B., Carraway K. L. Cell surface properties of ascites sublines of the 13762 rat mammary adenocarcinoma. Relationship of the major sialoglycoprotein to xenotransplantability. Exp Cell Res. 1980 Apr;126(2):417–426. doi: 10.1016/0014-4827(80)90281-5. [DOI] [PubMed] [Google Scholar]
- Sheterline P., Hopkins C. R. Transmembrane linkage between surface glycoproteins and components of the cytoplasm in neutrophil leukocytes. J Cell Biol. 1981 Sep;90(3):743–754. doi: 10.1083/jcb.90.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strauch A. R., Luna E. J., LaFountain J. R., Jr Biochemical analysis of actin in crane-fly gonial cells: evidence for actin in spermatocytes and spermatids--but not sperm. J Cell Biol. 1980 Jul;86(1):315–325. doi: 10.1083/jcb.86.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]