Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jan 1;98(1):283–295. doi: 10.1083/jcb.98.1.283

Three-dimensional structure of a membrane-microtubule complex

PMCID: PMC2113015  PMID: 6707092

Abstract

The unicellular algae Distigma proteus contain a group of aligned microtubules associated with their cell membrane. The association is maintained in isolated membrane fragments. The membrane-microtubule complex also includes a crystalline array of membrane particles. The major peptide component of this array was identified by labeling whole cells with radioiodine. The entire complex of membrane, particles, and microtubules is sufficiently well ordered to permit reconstruction from electron micrographs by Fourier techniques. A three-dimensional model of the membrane array at a nominal resolution of 2.5 nm has been calculated. Some similarities were apparent between lattice spacings in the membrane array and in microtubules. Analysis of these lattice correlations suggests a way in which the array of membrane particles may serve as scaffolding for microtubule attachment.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Clark J. I. Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4976–4980. doi: 10.1073/pnas.72.12.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol. 1977 Mar;72(3):642–654. doi: 10.1083/jcb.72.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
  4. Binder L. I., Rosenbaum J. L. The in vitro assembly of flagellar outer doublet tubulin. J Cell Biol. 1978 Nov;79(2 Pt 1):500–515. doi: 10.1083/jcb.79.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bürk R. R., Eschenbruch M., Leuthard P., Steck G. Sensitive detection of proteins and peptides in polyacrylamide gels after formaldehyde fixation. Methods Enzymol. 1983;91:247–254. doi: 10.1016/s0076-6879(83)91021-2. [DOI] [PubMed] [Google Scholar]
  6. Cohen C., DeRosier D., Harrison S. C., Stephens R. E., Thomas J. X-ray patterns from microtubules. Ann N Y Acad Sci. 1975 Jun 30;253:53–59. doi: 10.1111/j.1749-6632.1975.tb19192.x. [DOI] [PubMed] [Google Scholar]
  7. Dentler W. L. Microtubule-membrane interactions in cilia and flagella. Int Rev Cytol. 1981;72:1–47. doi: 10.1016/s0074-7696(08)61193-6. [DOI] [PubMed] [Google Scholar]
  8. Erickson H. P. Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol. 1974 Jan;60(1):153–167. doi: 10.1083/jcb.60.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heidemann S. R., McIntosh J. R. Visualization of the structural polarity of microtubules. Nature. 1980 Jul 31;286(5772):517–519. doi: 10.1038/286517a0. [DOI] [PubMed] [Google Scholar]
  10. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  11. Hofmann C., Bouck G. B. Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules. J Cell Biol. 1976 Jun;69(3):693–715. doi: 10.1083/jcb.69.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lefort-Tran M., Bre M. H., Ranck J. L., Pouphile M. Euglena plasma membrane during normal and vitamin B12 starvation growth. J Cell Sci. 1980 Feb;41:245–261. doi: 10.1242/jcs.41.1.245. [DOI] [PubMed] [Google Scholar]
  15. Linck R. W. The structure of microtubules. Ann N Y Acad Sci. 1982;383:98–121. doi: 10.1111/j.1749-6632.1982.tb23164.x. [DOI] [PubMed] [Google Scholar]
  16. Miller K. R., Miller G. J. Organization of the cell membrane in Euglena. Protoplasma. 1978;95(1-2):11–24. doi: 10.1007/BF01279691. [DOI] [PubMed] [Google Scholar]
  17. Morrison M. The determination of the exposed proteins on membranes by the use of lactoperoxidase. Methods Enzymol. 1974;32:103–109. doi: 10.1016/0076-6879(74)32013-7. [DOI] [PubMed] [Google Scholar]
  18. Murray J. M. Control of cell shape by calcium in the euglenophyceae. J Cell Sci. 1981 Jun;49:99–117. doi: 10.1242/jcs.49.1.99. [DOI] [PubMed] [Google Scholar]
  19. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SOMMER J. R. THE ULTRASTRUCTURE OF THE PELLICLE COMPLEX OF EUGLENA GRACILIS. J Cell Biol. 1965 Feb;24:253–257. doi: 10.1083/jcb.24.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith D. S., Järlfors U., Beránek R. The organization of synaptic axcplasm in the lamprey (petromyzon marinus) central nervous system. J Cell Biol. 1970 Aug;46(2):199–219. doi: 10.1083/jcb.46.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  23. Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
  24. Weatherbee J. A. Membranes and cell movement: interactions of membranes with the proteins of the cytoskeleton. Int Rev Cytol Suppl. 1981;12:113–176. doi: 10.1016/b978-0-12-364373-5.50014-7. [DOI] [PubMed] [Google Scholar]
  25. Weihing R. R. The cytoskeleton and plasma membrane. Methods Achiev Exp Pathol. 1979;8:42–109. [PubMed] [Google Scholar]
  26. Westrum L. E., Gray E. G. Microtubules associated with postsynaptic 'thickenings'. J Neurocytol. 1977 Oct;6(5):505–518. doi: 10.1007/BF01205216. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES