Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jun 1;98(6):2192–2197. doi: 10.1083/jcb.98.6.2192

Importance of geometry of the extracellular matrix in endochondral bone differentiation

PMCID: PMC2113045  PMID: 6725411

Abstract

Subcutaneous implantation of coarse powders (74-420 micron) of demineralized diaphyseal bone matrix resulted in the local differentiation of endochondral bone. However, implantation of matrix with particle size of 44-74 micron (Fine matrix) did not induce bone. We have recently reported that the dissociative extraction of coarse matrix with 4 M guanidine HCl resulted in a complete loss of the ability of matrix to induce endochondral bone; the total loss of biological activity could be restored by reconstitution of extracted soluble components with inactive residue. To determine the possible biochemical potential of fine matrix to induce bone, the matrix was extracted in 4 M guanidine HCl and the extract was reconstituted with biologically inactive 4 M guanidine HCl-treated coarse bone matrix residue. There was a complete restoration of the biological activity by the extract of fine matrix upon reconstitution with extracted coarse matrix. Polyacrylamide gel electrophoresis of the extract of fine matrix revealed similar protein profiles as seen for the extract of coarse matrix. Gel filtration of the 4 M guanidine HCl extract of fine powder on Sepharose CL-6B and the subsequent reconstitution of various column fractions with inactive coarse residue showed that fractions with proteins of 20,000-50,000 mol wt induced new bone formation. These observations demonstrate that although fine bone matrix contains, osteoinductive proteins, matrix geometry (size) is a critical factor in triggering the biochemical cascade of endochondral bone differentiation. Mixing of coarse matrix with Fine results in partial response and it was confined to areas in contact with coarse particles. The results imply a role for geometry of extracellular bone matrix in anchorage-dependent proliferation and differentiation of cells.

Full Text

The Full Text of this article is available as a PDF (757.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Folkman J., Greenspan H. P. Influence of geometry on control of cell growth. Biochim Biophys Acta. 1975 Dec 31;417(3-4):211–236. doi: 10.1016/0304-419x(75)90011-6. [DOI] [PubMed] [Google Scholar]
  2. Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
  3. Gospodarowicz D., Greenburg G., Birdwell C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 1978 Nov;38(11 Pt 2):4155–4171. [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Reddi A. H., Anderson W. A. Collagenous bone matrix-induced endochondral ossification hemopoiesis. J Cell Biol. 1976 Jun;69(3):557–572. doi: 10.1083/jcb.69.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Reddi A. H. Cell biology and biochemistry of endochondral bone development. Coll Relat Res. 1981 Feb;1(2):209–226. doi: 10.1016/s0174-173x(81)80021-0. [DOI] [PubMed] [Google Scholar]
  8. Reddi A. H., Huggins C. B. Formation of bone marrow in fibroblast-transformation ossicles. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2212–2216. doi: 10.1073/pnas.72.6.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Reddi A. H., Huggins C. B. Influence of geometry of transplanted tooth and bone on transformation of fibroblasts. Proc Soc Exp Biol Med. 1973 Jul;143(3):634–637. doi: 10.3181/00379727-143-37381. [DOI] [PubMed] [Google Scholar]
  10. Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sampath T. K., Reddi A. H. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7599–7603. doi: 10.1073/pnas.78.12.7599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stoker M., O'Neill C., Berryman S., Waxman V. Anchorage and growth regulation in normal and virus-transformed cells. Int J Cancer. 1968 Sep 15;3(5):683–693. doi: 10.1002/ijc.2910030517. [DOI] [PubMed] [Google Scholar]
  13. Urist M. R., DeLange R. J., Finerman G. A. Bone cell differentiation and growth factors. Science. 1983 May 13;220(4598):680–686. doi: 10.1126/science.6403986. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES