Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jun 1;98(6):2204–2214. doi: 10.1083/jcb.98.6.2204

Chemoattraction and chemotaxis in Dictyostelium discoideum: myxamoeba cannot read spatial gradients of cyclic adenosine monophosphate

PMCID: PMC2113049  PMID: 6327727

Abstract

Myxamoebae of the morphogenetic cellular slime mold Dictyostelium discoideum are thought to be able to accurately read and respond to directional information in spatial gradients of cyclic AMP. We examined the spatial and temporal mechanisms proposed for chemotaxis by comparing the behavior of spreading or evenly distributed cell populations after exposure to well-defined spatial gradients. The effects of gradient generation on cells were avoided by using predeveloped gradients. Qualitatively different responses were obtained using (a) isotropic, (b) static spatial, or (c) temporal (impulse) gradients in a simple chamber of penetrable micropore filters. We simulated models of chemotaxis and chemokinesis to aid our interpretations. The attractive and locomotory responses of populations were maximally stimulated by 0.05 microM cyclic AMP, provided that cellular phosphodiesterase was inhibited. But a single impulse of cyclic AMP during gradient development caused a greater and qualitatively different attraction. Attraction in spatial gradients was only transient, in that populations eventually developed a random distribution when confined to a narrow territory. Populations never accumulated nor lost their random distribution even in extremely steep spatial gradients. Attraction in spatial gradients was inducible only in spreading populations, not randomly distributed ones. Thus, spatial gradients effect biased-random locomotion: i.e., chemokinesis without adaptation. Cells cannot read gradients; the reaction of the cells is stochastic. Spatial gradients do not cause chemotaxis, which probably requires a sharp stimulant concentration increase (a temporal gradient) as a pulse or impulse. The results also bear on concepts of how embryonic cells might be able to decipher the positional information in a morphogen spatial gradient during development.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Antibiot Chemother (1971) 1974;19:55–78. doi: 10.1159/000395424. [DOI] [PubMed] [Google Scholar]
  2. Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg H. C., Tedesco P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3235–3239. doi: 10.1073/pnas.72.8.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell R. D., Marcum B. A. Nematocyte migration in hydra: evidence for contact guidance in vivo. J Cell Sci. 1980 Feb;41:33–51. doi: 10.1242/jcs.41.1.33. [DOI] [PubMed] [Google Scholar]
  5. Carter S. B. Haptotaxis and the mechanism of cell motility. Nature. 1967 Jan 21;213(5073):256–260. doi: 10.1038/213256a0. [DOI] [PubMed] [Google Scholar]
  6. Cohen M. H., Robertson A. Chemotaxis and the early stages of aggregation in cellular slime molds. J Theor Biol. 1971 Apr;31(1):119–130. doi: 10.1016/0022-5193(71)90125-1. [DOI] [PubMed] [Google Scholar]
  7. Crick F. Diffusion in embryogenesis. Nature. 1970 Jan 31;225(5231):420–422. doi: 10.1038/225420a0. [DOI] [PubMed] [Google Scholar]
  8. Darmon M., Barra J., Brachet P. The role of phosphodiesterase in aggregation of Dictyostelium discoideum. J Cell Sci. 1978 Jun;31:233–243. doi: 10.1242/jcs.31.1.233. [DOI] [PubMed] [Google Scholar]
  9. Darmon M., Brachet P., Da Silva L. H. Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3163–3166. doi: 10.1073/pnas.72.8.3163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Devreotes P. N., Derstine P. L., Steck T. L. Cyclic 3',5' AMP relay in Dictyostelium discoideum. I. A technique to monitor responses to controlled stimuli. J Cell Biol. 1979 Feb;80(2):291–299. doi: 10.1083/jcb.80.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Devreotes P. N., Steck T. L. Cyclic 3',5' AMP relay in Dictyostelium discoideum. II. Requirements for the initiation and termination of the response. J Cell Biol. 1979 Feb;80(2):300–309. doi: 10.1083/jcb.80.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dierich M. P., Wilhelmi D., Till G. Essential role of surface-bound chemoattractant in leukocyte migration. Nature. 1977 Nov 24;270(5635):351–352. doi: 10.1038/270351a0. [DOI] [PubMed] [Google Scholar]
  13. Dinauer M. C., MacKay S. A., Devreotes P. N. Cyclic 3',5'-AMP relay in Dictyostelium discoideum III. The relationship of cAMP synthesis and secretion during the cAMP signaling response. J Cell Biol. 1980 Aug;86(2):537–544. doi: 10.1083/jcb.86.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dinauer M. C., Steck T. L., Devreotes P. N. Cyclic 3',5'-AMP relay in Dictyostelium discoideum IV. Recovery of the cAMP signaling response after adaptation to cAMP. J Cell Biol. 1980 Aug;86(2):545–553. doi: 10.1083/jcb.86.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dinauer M. C., Steck T. L., Devreotes P. N. Cyclic 3',5'-AMP relay in Dictyostelium discoideum V. Adaptation of the cAMP signaling response during cAMP stimulation. J Cell Biol. 1980 Aug;86(2):554–561. doi: 10.1083/jcb.86.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dixon J. S., Cronly-Dillon J. R. The fine structure of the developing retina in Xenopus laevis. J Embryol Exp Morphol. 1972 Dec;28(3):659–666. [PubMed] [Google Scholar]
  17. Futrelle R. P., Berg H. C. Specification of gradients used for studies of chemotaxis. Nature. 1972 Oct 27;239(5374):517–518. doi: 10.1038/239517a0. [DOI] [PubMed] [Google Scholar]
  18. Futrelle R. P. Dictyostelium chemotactic response to spatial and temporal gradients. Theories of the limits of chemotactic sensitivity and of pseudochemotaxis. J Cell Biochem. 1982;18(2):197–212. doi: 10.1002/jcb.1982.240180207. [DOI] [PubMed] [Google Scholar]
  19. Futrelle R. P., Traut J., McKee W. G. Cell behavior in Dictyostelium discoideum: preaggregation response to localized cyclic AMP pulses. J Cell Biol. 1982 Mar;92(3):807–821. doi: 10.1083/jcb.92.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gallin E. K., Gallin J. I. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J Cell Biol. 1977 Oct;75(1):277–289. doi: 10.1083/jcb.75.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gerisch G. Cell aggregation and differentiation in Dictyostelium. Curr Top Dev Biol. 1968;3:157–197. doi: 10.1016/s0070-2153(08)60354-3. [DOI] [PubMed] [Google Scholar]
  22. Gerisch G. Extracellular cyclic-amp phosphodiesterase regulation in agar plate cultures of Dictyostelium discoideum. Cell Differ. 1976 Apr;5(1):21–25. doi: 10.1016/0045-6039(76)90011-7. [DOI] [PubMed] [Google Scholar]
  23. Gerisch G., Hess B. Cyclic-AMP-controlled oscillations in suspended Dictyostelium cells: their relation to morphogenetic cell interactions. Proc Natl Acad Sci U S A. 1974 May;71(5):2118–2122. doi: 10.1073/pnas.71.5.2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gerisch G., Hülser D., Malchow D., Wick U. Cell communication by periodic cyclic-AMP pulses. Philos Trans R Soc Lond B Biol Sci. 1975 Nov 6;272(915):181–192. doi: 10.1098/rstb.1975.0080. [DOI] [PubMed] [Google Scholar]
  25. Gerisch G., Keller H. U. Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J Cell Sci. 1981 Dec;52:1–10. doi: 10.1242/jcs.52.1.1. [DOI] [PubMed] [Google Scholar]
  26. Gerisch G., Malchow D. Cyclic AMP receptors and the control of cell aggregation in Dictyostelium. Adv Cyclic Nucleotide Res. 1976;7:49–68. [PubMed] [Google Scholar]
  27. Green A. A., Newell P. C. Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum. Cell. 1975 Oct;6(2):129–136. doi: 10.1016/0092-8674(75)90003-3. [DOI] [PubMed] [Google Scholar]
  28. Henderson E. J. The cyclic adenosine 3':5'-monophosphate receptor of Dictyostelium discoideum. Binding characteristics of aggregation-competent cells and variation of binding levels during the life cycle. J Biol Chem. 1975 Jun 25;250(12):4730–4736. [PubMed] [Google Scholar]
  29. KONIJN T. M., RAPER K. B. Cell aggregation in Dictyostelium discoideum. Dev Biol. 1961 Dec;3:725–756. doi: 10.1016/0012-1606(61)90038-0. [DOI] [PubMed] [Google Scholar]
  30. Keller H. U., Bessis M. Migration and chemotaxis of anucleate cytoplasmic leukocyte fragments. Nature. 1975 Dec 25;258(5537):723–724. doi: 10.1038/258723a0. [DOI] [PubMed] [Google Scholar]
  31. Keller H. U., Wilkinson P. C., Abercrombie M., Becker E. L., Hirsch J. G., Miller M. E., Ramsey W. S., Zigmond S. H. A proposal for the definition of terms related to locomotion of leukocytes and other cells. J Immunol. 1977 May;118(5):1912–1914. [PubMed] [Google Scholar]
  32. Klaus M., George R. P. Microdissection of developmental stages of the cellular slime mold, Dictyostelium discoideum, using a ruby laser. Dev Biol. 1974 Jul;39(1):183–188. doi: 10.1016/s0012-1606(74)80022-9. [DOI] [PubMed] [Google Scholar]
  33. Klein C. Binding of adenosine 3':5'-monophosphate to plasma membranes of Dictyostelium discoideum amoebae. J Biol Chem. 1981 Oct 10;256(19):10050–10053. [PubMed] [Google Scholar]
  34. Klein C. Induction of phosphodiesterase by cyclic adenosine 3':5'-monophosphate in differentiating Dictyostelium discoideum amoebae. J Biol Chem. 1975 Sep 25;250(18):7134–7138. [PubMed] [Google Scholar]
  35. Konijn T. M. Microbiological assay of cyclic 3',5'-AMP. Experientia. 1970 Apr 15;26(4):367–369. doi: 10.1007/BF01896891. [DOI] [PubMed] [Google Scholar]
  36. Lapidus I. R. "Pseudochemotaxis" by micro-organisms in an attractant gradient. J Theor Biol. 1980 Sep 7;86(1):91–103. doi: 10.1016/0022-5193(80)90067-3. [DOI] [PubMed] [Google Scholar]
  37. Letourneau P. C. Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol. 1978 Sep;66(1):183–196. doi: 10.1016/0012-1606(78)90283-x. [DOI] [PubMed] [Google Scholar]
  38. Macnab R. M., Koshland D. E., Jr The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509–2512. doi: 10.1073/pnas.69.9.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mangiarotti G., Ceccarelli A., Lodish H. F. Cyclic AMP stabilizes a class of developmentally regulated Dictyostelium discoideum mRNAs. Nature. 1983 Feb 17;301(5901):616–618. doi: 10.1038/301616a0. [DOI] [PubMed] [Google Scholar]
  41. Mason J. W., Rasmussen H., Dibella F. 3'5' AMP and Ca 2+ in slime mold aggregation. Exp Cell Res. 1971 Jul;67(1):156–160. doi: 10.1016/0014-4827(71)90631-8. [DOI] [PubMed] [Google Scholar]
  42. Mato J. M., Losada A., Nanjundiah V., Konijn T. M. Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4991–4993. doi: 10.1073/pnas.72.12.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Matsukuma S., Durston A. J. Chemotactic cell sorting in Dictyostelium discoideum. J Embryol Exp Morphol. 1979 Apr;50:243–251. [PubMed] [Google Scholar]
  44. Meinhardt H., Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci. 1974 Jul;15(2):321–346. doi: 10.1242/jcs.15.2.321. [DOI] [PubMed] [Google Scholar]
  45. O'Flaherty J. T., Kreutzer D. L., Ward P. A. Neutrophil aggregation and swelling induced by chemotactic agents. J Immunol. 1977 Jul;119(1):232–239. [PubMed] [Google Scholar]
  46. Oliver J. M. Cell biology of leukocyte abnormalities--membrane and cytoskeletal function in normal and defective cells. A review. Am J Pathol. 1978 Oct;93(1):221–270. [PMC free article] [PubMed] [Google Scholar]
  47. Pannbacker R. G., Bravard L. J. Phosphodiesterase in Dictyostelium discoideum and the chemotactic response to cyclic adenosine monophosphate. Science. 1972 Mar 3;175(4025):1014–1015. doi: 10.1126/science.175.4025.1014. [DOI] [PubMed] [Google Scholar]
  48. Parnas H., Segel L. A. Computer evidence concerning the chemotactic signal in Dictyostelium discoideum. J Cell Sci. 1977 Jun;25:191–204. doi: 10.1242/jcs.25.1.191. [DOI] [PubMed] [Google Scholar]
  49. Potel M. J., Mackay S. A. Preaggregative cell motion in Dictyostelium. J Cell Sci. 1979 Apr;36:281–309. doi: 10.1242/jcs.36.1.281. [DOI] [PubMed] [Google Scholar]
  50. Ramsey W. S. Retraction fibers and leucocyte chemotaxis. Exp Cell Res. 1974 May;86(1):184–187. doi: 10.1016/0014-4827(74)90669-7. [DOI] [PubMed] [Google Scholar]
  51. Robertson A., Drage D. J., Cohen M. H. Control of Aggregation in Dictyostelium discoideum by an External Periodic Pulse of Cyclic Adenosine Monophosphate. Science. 1972 Jan 21;175(4019):333–335. doi: 10.1126/science.175.4019.333. [DOI] [PubMed] [Google Scholar]
  52. Roos W., Malchow D., Gerisch G. Adenylyl cyclase and the control of cell differentiation in Dictyostelium dicoideum. Cell Differ. 1977 Oct;6(3-4):229–239. doi: 10.1016/0045-6039(77)90018-5. [DOI] [PubMed] [Google Scholar]
  53. Rosen G. Chemotactic transport theory for neutrophil leukocytes. J Theor Biol. 1976 Jul 7;59(2):371–380. doi: 10.1016/0022-5193(76)90177-6. [DOI] [PubMed] [Google Scholar]
  54. Shaffer B. M. Secretion of cyclic AMP induced by cyclic AMP in the cellular slime mould Dictyostelium discoideum. Nature. 1975 Jun 12;255(5509):549–552. doi: 10.1038/255549a0. [DOI] [PubMed] [Google Scholar]
  55. Sklar L. A., Jesaitis A. J., Painter R. G., Cochrane C. G. The kinetics of neutrophil activation. The response to chemotactic peptides depends upon whether ligand-receptor interaction is rate-limiting. J Biol Chem. 1981 Oct 10;256(19):9909–9914. [PubMed] [Google Scholar]
  56. Sternfeld J., David C. N. Oxygen gradients cause pattern orientation in Dictyostelium cell clumps. J Cell Sci. 1981 Aug;50:9–17. doi: 10.1242/jcs.50.1.9. [DOI] [PubMed] [Google Scholar]
  57. Swanson J. A., Taylor D. L. Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis. Cell. 1982 Feb;28(2):225–232. doi: 10.1016/0092-8674(82)90340-3. [DOI] [PubMed] [Google Scholar]
  58. Tomchik K. J., Devreotes P. N. Adenosine 3',5'-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution--fluorography. Science. 1981 Apr 24;212(4493):443–446. doi: 10.1126/science.6259734. [DOI] [PubMed] [Google Scholar]
  59. Tono-oka T., Nakayama M., Matsumoto S. Enhanced granulocyte mobility induced by chemotactic factor in the agarose plate. Proc Soc Exp Biol Med. 1978 Oct;159(1):75–79. doi: 10.3181/00379727-159-40287. [DOI] [PubMed] [Google Scholar]
  60. Van Haastert P. J., Van Walsum H., Pasveer F. J. Nonequilibrium kinetics of a cyclic GMP-binding protein in Dictyostelium discoideum. J Cell Biol. 1982 Aug;94(2):271–278. doi: 10.1083/jcb.94.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Vicker M. G. Ideal and non-ideal concentration gradient propagation in chemotaxis studies. Exp Cell Res. 1981 Nov;136(1):91–100. doi: 10.1016/0014-4827(81)90040-9. [DOI] [PubMed] [Google Scholar]
  62. Wilkinson P. C., Allan R. B. Chemotaxis of neutrophil leukocytes towards substratum-bound protein attractants. Exp Cell Res. 1978 Dec;117(2):403–412. doi: 10.1016/0014-4827(78)90153-2. [DOI] [PubMed] [Google Scholar]
  63. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol. 1969 Oct;25(1):1–47. doi: 10.1016/s0022-5193(69)80016-0. [DOI] [PubMed] [Google Scholar]
  64. Zigmond S. H. A modified millipore filter method for assaying polymorphonuclear leukocyte locomotion and chemotaxis. Antibiot Chemother (1971) 1974;19:126–145. doi: 10.1159/000395428. [DOI] [PubMed] [Google Scholar]
  65. Zigmond S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977 Nov;75(2 Pt 1):606–616. doi: 10.1083/jcb.75.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zigmond S. H. Chemotaxis by polymorphonuclear leukocytes. J Cell Biol. 1978 May;77(2):269–287. doi: 10.1083/jcb.77.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Zigmond S. H. Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature. 1974 May 31;249(456):450–452. doi: 10.1038/249450a0. [DOI] [PubMed] [Google Scholar]
  69. Zigmond S. H., Sullivan S. J. Sensory adaptation of leukocytes to chemotactic peptides. J Cell Biol. 1979 Aug;82(2):517–527. doi: 10.1083/jcb.82.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES