Abstract
The sequential changes in the three-dimensional organization of the filamentous components of human platelets following surface activation were investigated in whole-mount preparations. Examination of intact and Triton-extracted platelets by high voltage electron microscopy provides morphological evidence of increased polymerization of actin into the filamentous form and an increased organization of the cytoskeletal elements after activation. The structure of resting platelets consists of the circumferential band of microtubules and a small number of microfilaments randomly arranged throughout a dense cytoplasmic matrix. Increased spreading is accompanied by cytoskeletal reorganization resulting in the development of distinct ultrastructural zones including the peripheral web, the outer filamentous zone, the "trabecular-like" inner filamentous zone, and the granulomere . These zones are present only in well-spread platelets during the late stages of surface activation and are retained following Triton extraction. Extraction of the less stable cytoplasmic components provides additional information about the underlying structure and filament interactions within each zone.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Pollard T. D. Platelet contractile proteins. Prog Hemost Thromb. 1978;4:37–58. [PubMed] [Google Scholar]
- Brown S., Levinson W., Spudich J. A. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct. 1976;5(2):119–130. doi: 10.1002/jss.400050203. [DOI] [PubMed] [Google Scholar]
- Carlsson L., Markey F., Blikstad I., Persson T., Lindberg U. Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6376–6380. doi: 10.1073/pnas.76.12.6376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll R. C., Butler R. G., Morris P. A., Gerrard J. M. Separable assembly of platelet pseudopodal and contractile cytoskeletons. Cell. 1982 Sep;30(2):385–393. doi: 10.1016/0092-8674(82)90236-7. [DOI] [PubMed] [Google Scholar]
- Cohen I. The contractile system of blood platelets and its function. Methods Achiev Exp Pathol. 1979;9:40–86. [PubMed] [Google Scholar]
- Daniel J. L., Holmsen H., Adelstein R. S. Thrombin-stimulated myosin phosphorylation in intact platelets and its possible involvement secretion. Thromb Haemost. 1977 Dec 15;38(4):984–989. [PubMed] [Google Scholar]
- Debus E., Weber K., Osborn M. The cytoskeleton of blood platelets viewed by immunofluorescence microscopy. Eur J Cell Biol. 1981 Apr;24(1):45–52. [PubMed] [Google Scholar]
- Ellisman M. H., Porter K. R. Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 1980 Nov;87(2 Pt 1):464–479. doi: 10.1083/jcb.87.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabbiani G., Ryan G. B., Lamelin J. P., Vassalli P., Majno G., Bouvier C. A., Cruchaud A., Lüscher E. F. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to "nonmuscular" cells. Am J Pathol. 1973 Sep;72(3):473–488. [PMC free article] [PubMed] [Google Scholar]
- Gonnella P. A., Nachmias V. T. Platelet activation and microfilament bundling. J Cell Biol. 1981 Apr;89(1):146–151. doi: 10.1083/jcb.89.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith L. M., Pollard T. D. Cross-linking of actin filament networks by self-association and actin-binding macromolecules. J Biol Chem. 1982 Aug 10;257(15):9135–9142. [PubMed] [Google Scholar]
- Hartwig J. H., Tyler J., Stossel T. P. Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J Cell Biol. 1980 Dec;87(3 Pt 1):841–848. doi: 10.1083/jcb.87.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson D., Weber K. Three-dimensional organization of microfilaments and microtubules in the cytoskeleton. Immunoperoxidase labelling and stereo-electron microscopy of detergent-extracted cells. Exp Cell Res. 1979 Dec;124(2):301–316. doi: 10.1016/0014-4827(79)90206-4. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda Y., Kikuchi M., Handa M., Yoshii Y., Toyama K., Yamamoto M., Watanabe K., Ando Y. The role of calcium in platelet microtubule assembly-disassembly. Thromb Res. 1981 Jul 1;23(1-2):163–168. doi: 10.1016/0049-3848(81)90248-6. [DOI] [PubMed] [Google Scholar]
- Jennings L. K., Fox J. E., Edwards H. H., Phillips D. R. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem. 1981 Jul 10;256(13):6927–6932. [PubMed] [Google Scholar]
- Le Breton G. C., Dinerstein R. J., Roth L. J., Feinberg H. Direct evidence for intracellular divalent cation redistribution associated with platelet shape change. Biochem Biophys Res Commun. 1976 Jul 12;71(1):362–370. doi: 10.1016/0006-291x(76)90291-6. [DOI] [PubMed] [Google Scholar]
- Lewis J. C., Cowley L. H., Taylor R. G., Clarkson T. B. Ultrastructural analysis of platelets in nonhuman primates. I. Comparative morphometrics on six species. Exp Mol Pathol. 1980 Apr;32(2):175–187. doi: 10.1016/0014-4800(80)90053-2. [DOI] [PubMed] [Google Scholar]
- Lewis J. C., Prater T., Taylor R. G., White M. S. The use of correlative SEM and TEM to study thrombocyte and platelet adhesion to artificial surfaces. Scan Electron Microsc. 1980;(3):189–202. [PubMed] [Google Scholar]
- Lewis J. C., White M. S., Prater T., Taylor R. G., Davis K. S. Ultrastructural analysis of platelets in nonhuman primates. III. Stereo microscopy of microtubules during platelet adhesion and the release reaction. Exp Mol Pathol. 1982 Dec;37(3):370–381. doi: 10.1016/0014-4800(82)90049-1. [DOI] [PubMed] [Google Scholar]
- Mattson J. C., Zuiches C. A. Elucidation of the platelet cytoskeleton. Ann N Y Acad Sci. 1981;370:11–21. doi: 10.1111/j.1749-6632.1981.tb29716.x. [DOI] [PubMed] [Google Scholar]
- Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachmias V. T. Cytoskeleton of human platelets at rest and after spreading. J Cell Biol. 1980 Sep;86(3):795–802. doi: 10.1083/jcb.86.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachmias V. T., Sullender J., Fallon J., Asch A. Observations on the "cytoskeleton" of human platelets. Thromb Haemost. 1980 Feb 29;42(5):1661–1666. [PubMed] [Google Scholar]
- Nachmias V., Sullender J., Asch A. Shape and cytoplasmic filaments in control and lidocaine-treated human platelets. Blood. 1977 Jul;50(1):39–53. [PubMed] [Google Scholar]
- Osborn M., Weber K. The detertent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles. Exp Cell Res. 1977 May;106(2):339–349. doi: 10.1016/0014-4827(77)90179-3. [DOI] [PubMed] [Google Scholar]
- Phillips D. R., Jennings L. K., Edwards H. H. Identification of membrane proteins mediating the interaction of human platelets. J Cell Biol. 1980 Jul;86(1):77–86. doi: 10.1083/jcb.86.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotman A., Heldman J. Intracellular viscosity changes during activation of blood platelets: studies by fluorescence polarization. Biochemistry. 1981 Oct 13;20(21):5995–5999. doi: 10.1021/bi00524a011. [DOI] [PubMed] [Google Scholar]
- Schliwa M., van Blerkom J., Porter K. R. Stabilization and the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4329–4333. doi: 10.1073/pnas.78.7.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small J. V., Isenberg G., Celis J. E. Polarity of actin at the leading edge of cultured cells. Nature. 1978 Apr 13;272(5654):638–639. doi: 10.1038/272638a0. [DOI] [PubMed] [Google Scholar]
- Tangen O., Berman H. J., Marfey P. Gel filtration. A new technique for separation of blood platelets from plasma. Thromb Diath Haemorrh. 1971 Jun 30;25(2):268–278. [PubMed] [Google Scholar]
- Taylor R. G., Lewis J. C. Microfilament reorganization in normal and cytochalasin B treated adherent thrombocytes. J Supramol Struct Cell Biochem. 1981;16(3):209–220. doi: 10.1002/jsscb.1981.380160302. [DOI] [PubMed] [Google Scholar]
- Webster R. E., Henderson D., Osborn M., Weber K. Three-dimensional electron microscopical visualization of the cytoskeleton of animal cells: immunoferritin identification of actin- and tubulin-containing structures. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5511–5515. doi: 10.1073/pnas.75.11.5511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J. G. Current concepts of platelet structure. Am J Clin Pathol. 1979 Apr;71(4):363–378. doi: 10.1093/ajcp/71.4.363. [DOI] [PubMed] [Google Scholar]
- White J. G. Electron microscopic studies of platelet secretion. Prog Hemost Thromb. 1974;2(0):49–98. [PubMed] [Google Scholar]
- White J. G., Gerrard J. M. Interaction of microtubules and microfilaments in platelet contractile physiology. Methods Achiev Exp Pathol. 1979;9:1–39. [PubMed] [Google Scholar]
- White J. G., Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood. 1967 Nov;30(5):625–635. [PubMed] [Google Scholar]
- White J. G., Krivit W. Changes in platelet microtubules and granules during early clot development. Thromb Diath Haemorrh Suppl. 1967;26:29–42. [PubMed] [Google Scholar]
- Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]