Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jun 1;98(6):1999–2010. doi: 10.1083/jcb.98.6.1999

Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility

PMCID: PMC2113065  PMID: 6725407

Abstract

Newt eosinophils are motile granulated leukocytes that uniquely display a highly visible centrosomal area. Electron microscope and tubulin antibody fluorescence confirms the presence of centrioles, pericentriolar material, and radiating microtubules within this visible area. Actin antibodies intensely stain the advancing cell edges and tail but only weakly stain pseudopods being withdrawn into the cell. Randomly activated eosinophils follow a roughly consistent direction with an average rate of 22.5 micron/min. The position of the centrosome is always located between the trailing cell nucleus and advancing cell edge. If the cell extends more than one pseudopod, the one closest to or containing the centrosome is always the one in which motility continues. Laser irradiation of the visible centrosomal area resulted in rapid cell rounding. After several minutes following irradiation, most cells flattened and movement continued. However, postirradiation motility was uncoordinated and directionless , and the rate decreased to an average of 14.5 micron/min. Electron microscopy and tubulin immunofluorescence indicated that an initial disorganization of microtubules resulted from the laser microirradiations . After several minutes, organized microtubules reappeared, but the centrioles appeared increasingly damaged. The irregularities in motility due to irradiation are probably related to the damaged centrioles. The results presented in this paper suggest that the centrosome is an important structure in controlling the rate and direction of newt eosinophil motility.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht-Buehler G., Bushnell A. The orientation of centrioles in migrating 3T3 cells. Exp Cell Res. 1979 Apr;120(1):111–118. doi: 10.1016/0014-4827(79)90542-1. [DOI] [PubMed] [Google Scholar]
  2. Albrecht-Buehler G. Does the geometric design of centrioles imply their function? Cell Motil. 1981;1(2):237–245. doi: 10.1002/cm.970010206. [DOI] [PubMed] [Google Scholar]
  3. Allan R. B., Wilkinson P. C. A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leucocytes. Use of a new chemotaxis assay with Candida albicans as gradient source. Exp Cell Res. 1978 Jan;111(1):191–203. doi: 10.1016/0014-4827(78)90249-5. [DOI] [PubMed] [Google Scholar]
  4. Allison A. C. Mechanism of movement and maintenance of polarity in leucocytes. Antibiot Chemother (1971) 1974;19:191–217. doi: 10.1159/000395432. [DOI] [PubMed] [Google Scholar]
  5. Asnes C. F., Wilson L. Isolation of bovine brain microtubule protein without glycerol: polymerization kinetics change during purification cycles. Anal Biochem. 1979 Sep 15;98(1):64–73. doi: 10.1016/0003-2697(79)90706-1. [DOI] [PubMed] [Google Scholar]
  6. Badley R. A., Couchman J. R., Rees D. A. Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts. J Muscle Res Cell Motil. 1980 Mar;1(1):5–14. doi: 10.1007/BF00711922. [DOI] [PubMed] [Google Scholar]
  7. Bandmann U., Norberg B., Rydgren L. Polymorphonuclear leucocyte chemotaxis in Boyden chambers. Effect of low concentrations of vinblastine. Scand J Haematol. 1974;13(4):305–312. doi: 10.1111/j.1600-0609.1974.tb00274.x. [DOI] [PubMed] [Google Scholar]
  8. Bandmann U., Rydgren L., Norberg B. The difference between random movement and chemotaxis. Effects of antitubulins on neutrophil granulocyte locomotion. Exp Cell Res. 1974 Sep;88(1):63–73. doi: 10.1016/0014-4827(74)90618-1. [DOI] [PubMed] [Google Scholar]
  9. Berns M. W., Aist J., Edwards J., Strahs K., Girton J., McNeill P., Rattner J. B., Kitzes M., Hammer-Wilson M., Liaw L. H. Laser microsurgery in cell and developmental biology. Science. 1981 Jul 31;213(4507):505–513. doi: 10.1126/science.7017933. [DOI] [PubMed] [Google Scholar]
  10. Berns M. W., Richardson S. M. Continuation of mitosis after selective laser microbeam destruction of the centriolar region. J Cell Biol. 1977 Dec;75(3):977–982. doi: 10.1083/jcb.75.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bessis M., Burté B. Positive and negative chemotaxis as observed after the destruction of a cell by U. V. or laser microbeams. Tex Rep Biol Med. 1965 Jun;23(Suppl):204–212. [PubMed] [Google Scholar]
  12. Fuller G. M., Brinkley B. R., Boughter J. M. Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science. 1975 Mar 14;187(4180):948–950. doi: 10.1126/science.1096300. [DOI] [PubMed] [Google Scholar]
  13. Gotlieb A. I., May L. M., Subrahmanyan L., Kalnins V. I. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol. 1981 Nov;91(2 Pt 1):589–594. doi: 10.1083/jcb.91.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gotlieb A. I., Subrahmanyan L., Kalnins V. I. Microtubule-organizing centers and cell migration: effect of inhibition of migration and microtubule disruption in endothelial cells. J Cell Biol. 1983 May;96(5):1266–1272. doi: 10.1083/jcb.96.5.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Isenberg G., Rathke P. C., Hülsmann N., Franke W. W., Wohlfarth-Bottermann K. E. Cytoplasmic actomyosin fibrils in tissue culture cells: direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tissue Res. 1976 Feb 27;166(4):427–443. doi: 10.1007/BF00225909. [DOI] [PubMed] [Google Scholar]
  16. Jockusch B. M., Haemmerli G., In Albon A. Cytoskeletal organization in locomoting cells of the V2 rabbit carcinoma. Exp Cell Res. 1983 Apr 1;144(2):251–263. doi: 10.1016/0014-4827(83)90405-6. [DOI] [PubMed] [Google Scholar]
  17. Lazarides E. Immunofluorescence studies on the structure of actin filaments in tissue culture cells. J Histochem Cytochem. 1975 Jul;23(7):507–528. doi: 10.1177/23.7.1095651. [DOI] [PubMed] [Google Scholar]
  18. Liaw L. H., Berns M. W. Electron microscope autoradiography on serial sections of preselected single living cells. J Ultrastruct Res. 1981 May;75(2):187–194. doi: 10.1016/s0022-5320(81)80134-7. [DOI] [PubMed] [Google Scholar]
  19. Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Porter K. R., Tucker J. B. The ground substance of the living cell. Sci Am. 1981 Mar;244(3):56–67. doi: 10.1038/scientificamerican0381-56. [DOI] [PubMed] [Google Scholar]
  21. Ramsey W. S., Harris A. Leucocyte locomotion and its inhibition by antimitotic drugs. Exp Cell Res. 1973 Dec;82(2):262–270. doi: 10.1016/0014-4827(73)90340-6. [DOI] [PubMed] [Google Scholar]
  22. Schliwa M., Pryzwansky K. B., Euteneuer U. Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility. Cell. 1982 Dec;31(3 Pt 2):705–717. doi: 10.1016/0092-8674(82)90325-7. [DOI] [PubMed] [Google Scholar]
  23. Senda N., Tamura H., Shibata N., Yoshitake J., Konko K., Tanaka K. The mechanism of the movement of leucocytes. Exp Cell Res. 1975 Mar 15;91(2):393–407. doi: 10.1016/0014-4827(75)90120-2. [DOI] [PubMed] [Google Scholar]
  24. Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Walter R. J., Berns M. W. Computer-enhanced video microscopy: digitally processed microscope images can be produced in real time. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6927–6931. doi: 10.1073/pnas.78.11.6927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zakhireh B., Malech H. L. The effect of colchicine and vinblastine on the chemotactic response of human monocytes. J Immunol. 1980 Nov;125(5):2143–2153. [PubMed] [Google Scholar]
  27. Zapata A., Villena A., Cooper E. L. Ultrastructure of the jugular body of Rana pipiens. Cell Tissue Res. 1981;221(1):193–202. doi: 10.1007/BF00216581. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES