Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Feb 1;98(2):670–677. doi: 10.1083/jcb.98.2.670

Hagfish slime gland thread cells. II. Isolation and characterization of intermediate filament components associated with the thread

PMCID: PMC2113076  PMID: 6537953

Abstract

The slime glands of hagfish have two major cell types, gland thread cells (GTCs) and gland mucous cells (GMCs), both of which upon contact with water contribute to the formation of an abundant quantity of viscous mucus. In previous studies we reported a method for the isolation of GTCs and showed that each ellipsoidal thread cell normally contains a single tapered thread which is uniquely coiled into a space- saving conformation and occupies most of the cell volume. Subsequently, the developing thread was found to consist mainly of intermediate filaments (IFs) aligned in parallel not only to one another but also to a far fewer number of interspersed microtubules (see accompanying paper). In the present report, urea extracts of GTCs were purified and characterized to establish the properties of thread components. One major (alpha) and two minor (beta, gamma) components prepared by anion exchange chromatography were shown to have similar apparent molecular weights of 63,500 +/- 500 daltons but different isoelectric pH values (alpha, 7.56; beta, 5.67; gamma, 5.31). Although the amino acid content of alpha differed significantly from beta and gamma, each of the three was highest in Gly, relatively high in Glx, Ser, Thr, Asx, Ala, Val, and Leu, and relatively low in Cys/2 and Trp. The amino acid compositions of beta and gamma were very similar, and only beta showed evidence of carbohydrate. The threonine content of the alpha component was higher than has been reported for IFs of different origin, and the high content of hydroxyamino acids (18, 19 residues per 100) in alpha, beta, and gamma has been approached only by several IF polypeptides from human or bovine epidermal keratins. Mixtures of the purified components formed 9-11-nm filaments in vitro. The results indicate that the hagfish thread cell is a rich source of IFs, which have a structure that facilitates formation of macrofibrils within the cell.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHEN C. C., GROSSBERG A. L., PRESSMAN D. Effect of cyanate on several anti-hapten antibodies: evidence for the presence of an amino group in the site of anti-p-azobenzenearsonate antibody. Biochemistry. 1962 Nov;1:1025–1030. doi: 10.1021/bi00912a012. [DOI] [PubMed] [Google Scholar]
  2. Catley B. J., Moore S., Stein W. H. The carbohydrate moiety of bovine pancreatic deoxyribonuclease. J Biol Chem. 1969 Feb 10;244(3):933–936. [PubMed] [Google Scholar]
  3. Dale B. A., Holbrook K. A., Steinert P. M. Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature. 1978 Dec 14;276(5689):729–731. doi: 10.1038/276729a0. [DOI] [PubMed] [Google Scholar]
  4. Dale B. A., Stern I. B., Clagett J. A. Initial characterization of the proteins of keratinized epithelium of rat oral mucosa. Arch Oral Biol. 1977;22(2):75–82. doi: 10.1016/0003-9969(77)90081-4. [DOI] [PubMed] [Google Scholar]
  5. Dale B. A., Vadlamudi B., DeLap L. W., Bernstein I. A. Similarities between stratum corneum basic protein and histidine-rich protein II from newborn rat epidermis. Biochim Biophys Acta. 1981 Mar 27;668(1):98–106. doi: 10.1016/0005-2795(81)90153-7. [DOI] [PubMed] [Google Scholar]
  6. Davison P. F., Winslow B. The protein subunit of calf brain neurofilament. J Neurobiol. 1974;5(2):119–133. doi: 10.1002/neu.480050204. [DOI] [PubMed] [Google Scholar]
  7. Downing S. W., Salo W. L., Spitzer R. H., Koch E. A. The hagfish slime gland: a model system for studying the biology of mucus. Science. 1981 Dec 4;214(4525):1143–1145. doi: 10.1126/science.7302586. [DOI] [PubMed] [Google Scholar]
  8. Downing S. W., Spitzer R. H., Salo W. L., Downing J. S., Saidel L. J., Koch E. A. Threads in the hagfish slime gland thread cells: organization, biochemical features, and length. Science. 1981 Apr 17;212(4492):326–328. doi: 10.1126/science.212.4492.326. [DOI] [PubMed] [Google Scholar]
  9. Eng L. F., Vanderhaeghen J. J., Bignami A., Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971 May 7;28(2):351–354. doi: 10.1016/0006-8993(71)90668-8. [DOI] [PubMed] [Google Scholar]
  10. Franke W. W., Winter S., Grund C., Schmid E., Schiller D. L., Jarasch E. D. Isolation and characterization of desmosome-associated tonofilaments from rat intestinal brush border. J Cell Biol. 1981 Jul;90(1):116–127. doi: 10.1083/jcb.90.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fraser R. D., MacRae T. P., Suzuki E. Structure of the alpha-keratin microfibril. J Mol Biol. 1976 Dec;108(2):435–452. doi: 10.1016/s0022-2836(76)80129-5. [DOI] [PubMed] [Google Scholar]
  12. Fuchs E., Green H. The expression of keratin genes in epidermis and cultured epidermal cells. Cell. 1978 Nov;15(3):887–897. doi: 10.1016/0092-8674(78)90273-8. [DOI] [PubMed] [Google Scholar]
  13. Geisler N., Weber K. Isolation of polymerization-competent vimentin from porcine eye lens tissue. FEBS Lett. 1981 Mar 23;125(2):253–256. doi: 10.1016/0014-5793(81)80732-6. [DOI] [PubMed] [Google Scholar]
  14. Hugli T. E., Moore S. Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysates. J Biol Chem. 1972 May 10;247(9):2828–2834. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  17. Lazarides E. Intermediate filaments--chemical heterogeneity in differentiation. Cell. 1981 Mar;23(3):649–650. doi: 10.1016/0092-8674(81)90427-x. [DOI] [PubMed] [Google Scholar]
  18. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
  19. Milstone L. M. Isolation and characterization of two polypeptides that form intermediate filaments in bovine esophageal epithelium. J Cell Biol. 1981 Feb;88(2):317–322. doi: 10.1083/jcb.88.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakagawa Y., Perlmann G. E. Modification of lysine residues of pepsinogen with dicarboxylic anhydrides. Arch Biochem Biophys. 1972 Apr;149(2):476–483. doi: 10.1016/0003-9861(72)90347-5. [DOI] [PubMed] [Google Scholar]
  21. Nelson W. J., Traub P. Purification of the intermediate filament protein vimentin from Ehrlich ascites tumor cells. J Biol Chem. 1982 May 25;257(10):5536–5543. [PubMed] [Google Scholar]
  22. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  23. Pruss R. M., Mirsky R., Raff M. C., Thorpe R., Dowding A. J., Anderton B. H. All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell. 1981 Dec;27(3 Pt 2):419–428. doi: 10.1016/0092-8674(81)90383-4. [DOI] [PubMed] [Google Scholar]
  24. Small J. V., Sobieszek A. Studies on the function and composition of the 10-NM(100-A) filaments of vertebrate smooth muscle. J Cell Sci. 1977 Feb;23:243–268. doi: 10.1242/jcs.23.1.243. [DOI] [PubMed] [Google Scholar]
  25. Spitzer R. H., Downing S. W., Koch E. A., Kaplan M. A. Hemagglutinins in the mucus of Pacific hagfish, Eptatretus stoutii. Comp Biochem Physiol B. 1976;54(3):409–411. doi: 10.1016/0305-0491(76)90266-2. [DOI] [PubMed] [Google Scholar]
  26. Spitzer R. H., Downing S. W., Koch E. A. Metabolic-morphologic events in the integument of the Pacific hagfish (Eptatretus stoutii). Cell Tissue Res. 1979 Mar 19;197(2):235–255. doi: 10.1007/BF00233917. [DOI] [PubMed] [Google Scholar]
  27. Starger J. M., Brown W. E., Goldman A. E., Goldman R. D. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol. 1978 Jul;78(1):93–109. doi: 10.1083/jcb.78.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinert P. M., Cantieri J. S., Teller D. C., Lonsdale-Eccles J. D., Dale B. A. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4097–4101. doi: 10.1073/pnas.78.7.4097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steinert P. M., Idler W. W., Goldman R. D. Intermediate filaments of baby hamster kidney (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4534–4538. doi: 10.1073/pnas.77.8.4534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steinert P. M., Idler W. W. The polypeptide composition of bovine epidermal alpha-keratin. Biochem J. 1975 Dec;151(3):603–614. doi: 10.1042/bj1510603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Steinert P. M., Idler W. W., Zimmerman S. B. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol. 1976 Dec 15;108(3):547–567. doi: 10.1016/s0022-2836(76)80136-2. [DOI] [PubMed] [Google Scholar]
  32. Steinert P. M. The extraction and characterization of bovine epidermal alpha-keratin. Biochem J. 1975 Jul;149(1):39–48. doi: 10.1042/bj1490039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steinert P., Zackroff R., Aynardi-Whitman M., Goldman R. D. Isolation and characterization of intermediate filaments. Methods Cell Biol. 1982;24:399–419. doi: 10.1016/s0091-679x(08)60667-6. [DOI] [PubMed] [Google Scholar]
  34. Terakado K., Ogawa M., Hashimoto Y., Matsuzaki H. Ultrastructure of the thread cells in the slime gland of Japanese hagfishes, Paramyxine atami and Eptatretus burgeri. Cell Tissue Res. 1975 Jun 13;159(3):311–323. doi: 10.1007/BF00221779. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES