Abstract
The purpose of the work was to develop an in vitro model for the study of lymphatic endothelium and to determine, using this model, whether or not a cytoplasmic process may be involved in transendothelial transport. Segments of canine renal hilar lymphatics were dissected clean, cannulated at both ends, and transferred to a perfusion chamber for measurement of transendothelial protein transport and for ultrastructural tracer studies. The segments were subsequently processed for light and electron microscopy. By both structural and functional criteria the lymphatics were judged to have retained their integrity. At 37 degrees C, 36 lymphatics showed a mean rate of protein transport of 3.51 +/- 0.45 (SEM) micrograms/min per cm2 of lymphatic endothelium. The rate was influenced by the temperature of the system, being significantly reduced by 49% +/- 4.8, 31% +/- 5.3, and 29% +/- 3.9 when the temperature was lowered to 4 degrees, 24 degrees, and 30 degrees C, respectively. When the temperature was raised to 40 degrees C, the rate was significantly increased by 48% +/- 12.2. The vesicular system and the intercellular regions in vessels with increased or reduced rates of transport were analyzed quantitatively to ascertain whether the rate changes could be correlated with ultrastructurally demonstrable changes in either of these postulated pathways. No significant changes in junctional or vesicular parameters were found between the control lymphatics and those perfused at 24 degrees, 30 degrees, and 40 degrees C. At 4 degrees C, the temperature at which the rate of protein transport was maximally reduced, vesicular size decreased, and the number of free cytoplasmic vesicles increased, whereas the number associated with the abluminal and luminal surfaces decreased. We concluded that isolated perfused lymphatic segments transport protein at a relatively constant rate under control conditions, and that this transendothelial transport comprises both temperature-dependent and temperature-independent mechanisms. The findings were considered in terms of the different theories of lymph formation and were interpreted as providing support for the vesicular theory.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertine K. H., O'Morchoe C. C. An ultrastructural study of the transport pathways across arcuate, interlobar, hilar, and capsular lymphatics in the dog kidney. Microvasc Res. 1981 May;21(3):351–361. doi: 10.1016/0026-2862(81)90018-2. [DOI] [PubMed] [Google Scholar]
- Albertine K. H., O'Morchoe C. C. Renal lymphatic ultrastructure and translymphatic transport. Microvasc Res. 1980 May;19(3):338–351. doi: 10.1016/0026-2862(80)90053-9. [DOI] [PubMed] [Google Scholar]
- Arminski L., Weinbaum S., Pfeffer R. Time dependent theory for vesicular transport across vascular endothelium. J Theor Biol. 1980 Jul 7;85(1):13–43. doi: 10.1016/0022-5193(80)90278-7. [DOI] [PubMed] [Google Scholar]
- Azzali G. The ultrastructural basis of lipid transport in the absorbing lymphatic vessel. J Submicrosc Cytol. 1982 Jan;14(1):45–54. [PubMed] [Google Scholar]
- Brendel K., Meezan E., Carlson E. C. Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science. 1974 Sep 13;185(4155):953–955. doi: 10.1126/science.185.4155.953. [DOI] [PubMed] [Google Scholar]
- Bruns R. R., Palade G. E. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968 May;37(2):244–276. doi: 10.1083/jcb.37.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bundgaard M., Hagman P., Crone C. The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res. 1983 May;25(3):358–368. doi: 10.1016/0026-2862(83)90025-0. [DOI] [PubMed] [Google Scholar]
- CASLEY-SMITH J. R. THE BROWNIAN MOVEMENTS OF PINOCYTIC VESICLES. J R Microsc Soc. 1964 Mar;82:257–261. doi: 10.1111/j.1365-2818.1964.tb04480.x. [DOI] [PubMed] [Google Scholar]
- Casley-Smith J. R., Chin J. C. The passage of cytoplasmic vesicles across endothelial and mesothelial cells. J Microsc. 1971 Jun;93(3):167–189. doi: 10.1111/j.1365-2818.1971.tb02280.x. [DOI] [PubMed] [Google Scholar]
- Casley-Smith J. R. Mechanisms in the formation of lymph. Int Rev Physiol. 1982;26:147–187. [PubMed] [Google Scholar]
- Dobbins W. O., 3rd, Rollins E. L. Intestinal mucosal lymphatic permeability: an electron microscopic study of endothelial vesicles and cell junctions. J Ultrastruct Res. 1970 Oct;33(1):29–59. doi: 10.1016/s0022-5320(70)90117-6. [DOI] [PubMed] [Google Scholar]
- Jones W. R., O'Morchoe P. J., O'Morchoe C. C. The organization of endocytotic vesicles in lymphatic endothelium. Microvasc Res. 1983 May;25(3):286–299. doi: 10.1016/0026-2862(83)90019-5. [DOI] [PubMed] [Google Scholar]
- Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leak L. V., Burke J. F. Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology. 1968 Jun;1(2):39–52. [PubMed] [Google Scholar]
- Leak L. V., Burke J. F. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat. 1966 May;118(3):785–809. doi: 10.1002/aja.1001180308. [DOI] [PubMed] [Google Scholar]
- Mistry G., Drummond G. I. Heart microvessels: presence of adenylate cyclase stimulated by catecholamines, prostaglandins, and adenosine. Microvasc Res. 1983 Sep;26(2):157–169. doi: 10.1016/0026-2862(83)90067-5. [DOI] [PubMed] [Google Scholar]
- Nicolaysen G., Nicolaysen A., Staub N. C. A quantitative radioautographic comparison of albumin concentration in different dized lymph vessels in normal mouse lungs. Microvasc Res. 1975 Sep;10(2):138–152. doi: 10.1016/0026-2862(75)90002-3. [DOI] [PubMed] [Google Scholar]
- Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renkin E. M., Joyner W. L., Sloop C. H., Watson P. D. Influence of venous pressure on plasma-lymph transport in the dog's paw: convective and dissipative mechanisms. Microvasc Res. 1977 Sep;14(2):191–204. doi: 10.1016/0026-2862(77)90018-8. [DOI] [PubMed] [Google Scholar]
- Renkin E. M., Watson P. D., Sloop C. H., Joyner W. M., Curry F. E. Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw. Microvasc Res. 1977 Sep;14(2):205–214. doi: 10.1016/0026-2862(77)90019-x. [DOI] [PubMed] [Google Scholar]
- Rubin B. T. A theoretical model of the pinocytotic vesicular transport process in endothelial cells. J Theor Biol. 1977 Feb 21;64(4):619–647. doi: 10.1016/0022-5193(77)90264-8. [DOI] [PubMed] [Google Scholar]
- Simionescu M., Simionescu N., Silbert J. E., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol. 1981 Sep;90(3):614–621. doi: 10.1083/jcb.90.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol. 1981 Sep;90(3):605–613. doi: 10.1083/jcb.90.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol. 1973 May;57(2):424–452. doi: 10.1083/jcb.57.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinman R. M., Silver J. M., Cohn Z. A. Pinocytosis in fibroblasts. Quantitative studies in vitro. J Cell Biol. 1974 Dec;63(3):949–969. doi: 10.1083/jcb.63.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A., Gibson H. Concentrating ability of lymphatic vessels. Lymphology. 1975 Jun;8(2):43–49. [PubMed] [Google Scholar]
- Tsilibary E. C., Wissig S. L. Absorption from the peritoneal cavity: SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat. 1977 May;149(1):127–133. doi: 10.1002/aja.1001490111. [DOI] [PubMed] [Google Scholar]
- Wagner R. C., Casley-Smith J. R. Review. Endothelial vesicles. Microvasc Res. 1981 May;21(3):267–298. doi: 10.1016/0026-2862(81)90011-x. [DOI] [PubMed] [Google Scholar]
- Wagner R. C., Kreiner P., Barrnett R. J., Bitensky M. W. Biochemical characterization and cytochemical localization of a catecholamine-sensitive adenylate cyclase in isolated capillary endothelium. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3175–3179. doi: 10.1073/pnas.69.11.3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner R. C., Robinson C. S., Cross P. J., Devenny J. J. Endocytosis and exocytosis of transferrin by isolated capillary endothelium. Microvasc Res. 1983 May;25(3):387–396. doi: 10.1016/0026-2862(83)90028-6. [DOI] [PubMed] [Google Scholar]
- Williams S. K., Matthews M. A., Wagner R. C. Metabolic studies on the micropinocytic process in endothelial cells. Microvasc Res. 1979 Sep;18(2):175–184. doi: 10.1016/0026-2862(79)90027-x. [DOI] [PubMed] [Google Scholar]
- Yang V. V., O'Morchoe P. J., O'Morchoe C. C. Transport of protein across lymphatic endothelium in the rat kidney. Microvasc Res. 1981 Jan;21(1):75–91. doi: 10.1016/0026-2862(81)90006-6. [DOI] [PubMed] [Google Scholar]
- Zweifach B. W., Prather J. W. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Physiol. 1975 May;228(5):1326–1335. doi: 10.1152/ajplegacy.1975.228.5.1326. [DOI] [PubMed] [Google Scholar]
