Abstract
The human-derived promyelocytic leukemia cell line, HL-60, is known to differentiate into mature myeloid cells in the presence of 1,25- dihydroxyvitamin D3 (1,25[OH]2D3). We investigated differentiation by monitoring 1,25(OH)2D3-exposed HL-60 cells for phagocytic activity, ability to reduce nitroblue tetrazolium, binding of the chemotaxin N- formyl-methionyl-leucyl-[3H]phenylalanine, development of nonspecific acid esterase activity, and morphological maturation of Wright-Giemsa- stained cells. 1,25(OH)2D3 concentrations as low as 10(-10) M caused significant development of phagocytosis, nitroblue tetrazolium reduction, and the emergence of differentiated myeloid cells that had morphological characteristics of both metamyelocytes and monocytes. These cells were conclusively identified as monocytes/macrophages based upon their adherence to the plastic flasks and their content of the macrophage-characteristic nonspecific acid esterase enzyme. The estimated ED50 for 1,25(OH)2D3-induced differentiation based upon nitroblue tetrazolium reduction and N-formyl-methionyl-leucyl- [3H]phenylalanine binding was 5.7 X 10(-9) M. HL-60 cells exhibited a complex growth response with various levels of 1,25(OH)2D3: less than or equal to 10(-10) M had no detectable effect, 10(-9) M stimulated growth, and greater than or equal to 10(-8) M sharply inhibited proliferation. We also detected and quantitated the specific receptor for 1,25(OH)2D3 in HL-60 and HL-60 Blast, a sub-clone resistant to the growth and differentiation effects of 1,25(OH)2D3. The receptor in both lines was characterized as a DNA-binding protein that migrated at 3.3S on high-salt sucrose gradients. Unequivocal identification was provided by selective dissociation of the 1,25(OH)2D3-receptor complex with the mercurial reagent, p-chloromercuribenzenesulfonic acid, and by a shift in its sedimentation position upon complexing with anti-receptor monoclonal antibody. On the basis of labeling of whole cells with 1,25(OH)2[3H]D3 in culture, we found that HL-60 contains approximately 4,000 1,25(OH)2D3 receptor molecules per cell, while the nonresponsive HL-60 Blast is endowed with approximately 8% of that number. The concentration of 1,25(OH)2D3 (5 X 10(-9) M) in complete culture medium, which facilitates the saturation of receptors in HL-60 cells, is virtually identical to the ED50 for the sterol's induction of differentiation. This correspondence, plus the resistance of the relatively receptor-poor HL-60 Blast, indicates that 1,25(OH)2D3- induced differentiation of HL-60 cells to monocytes/macrophages is occurring via receptor-mediated events.
Full Text
The Full Text of this article is available as a PDF (926.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baehner R. L., Boxer L. A., Davis J. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood. 1976 Aug;48(2):309–313. [PubMed] [Google Scholar]
- Bar-Shavit Z., Noff D., Edelstein S., Meyer M., Shibolet S., Goldman R. 1,25-dihydroxyvitamin D3 and the regulation of macrophage function. Calcif Tissue Int. 1981;33(6):673–676. doi: 10.1007/BF02409507. [DOI] [PubMed] [Google Scholar]
- Breitman T. R., Selonick S. E., Collins S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980 May;77(5):2936–2940. doi: 10.1073/pnas.77.5.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. I. Association of 1 alpha,25-dihydroxycholecalciferol with intestinal mucosa chromatin. J Biol Chem. 1974 Feb 25;249(4):1251–1257. [PubMed] [Google Scholar]
- Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor. J Biol Chem. 1974 Feb 25;249(4):1258–1262. [PubMed] [Google Scholar]
- Chandler J. S., Pike J. W., Haussler M. R. 1,25-Dihydroxyvitamin D3 receptors in rat kidney cytosol. Biochem Biophys Res Commun. 1979 Oct 12;90(3):1057–1063. doi: 10.1016/0006-291x(79)91933-8. [DOI] [PubMed] [Google Scholar]
- Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
- Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A. 1978 May;75(5):2458–2462. doi: 10.1073/pnas.75.5.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colston K., Colston M. J., Feldman D. 1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology. 1981 Mar;108(3):1083–1086. doi: 10.1210/endo-108-3-1083. [DOI] [PubMed] [Google Scholar]
- Cooper R. A., Braunwald A. D., Kuo A. L. Phorbol ester induction of leukemic cell differentiation is a membrane-mediated process. Proc Natl Acad Sci U S A. 1982 May;79(9):2865–2869. doi: 10.1073/pnas.79.9.2865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coty W. A. Reversible dissociation of steroid hormone x receptor complexes by mercurial reagents. J Biol Chem. 1980 Sep 10;255(17):8035–8037. [PubMed] [Google Scholar]
- Douer D., Koeffler H. P. Retinoic acid. Inhibition of the clonal growth of human myeloid leukemia cells. J Clin Invest. 1982 Feb;69(2):277–283. doi: 10.1172/JCI110450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisman J. A., Martin T. J., MacIntyre I., Frampton R. J., Moseley J. M., Whitehead R. 1,25-Dihydroxyvitamin D3 receptor in a cultured human breast cancer cell line (MCF 7 cells). Biochem Biophys Res Commun. 1980 Mar 13;93(1):9–15. doi: 10.1016/s0006-291x(80)80238-5. [DOI] [PubMed] [Google Scholar]
- Freake H. C., Marcocci C., Iwasaki J., MacIntyre I. 1,25-dihydroxyvitamin D3 specifically binds to a human breast cancer cell line (T47D) and stimulates growth. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1131–1138. doi: 10.1016/0006-291x(81)91565-5. [DOI] [PubMed] [Google Scholar]
- Haussler M. R., Chandler J. S., Hagan L. A., Pike J. W. Use of chick kidney to enzymatically generate radiolabeled 1,25-dihydroxyvitamin D and other vitamin D metabolites. Methods Enzymol. 1980;67:529–542. doi: 10.1016/s0076-6879(80)67066-9. [DOI] [PubMed] [Google Scholar]
- Haussler M. R., McCain T. A. Basic and clinical concepts related to vitamin D metabolism and action (second of two parts). N Engl J Med. 1977 Nov 10;297(19):1041–1050. doi: 10.1056/NEJM197711102971906. [DOI] [PubMed] [Google Scholar]
- Haussler M. R., Pike J. W., Chandler J. S., Manolagas S. C., Deftos L. J. Molecular action of 1,25-dihydroxyvitamin D3: new cultured cell models. Ann N Y Acad Sci. 1981;372:502–517. doi: 10.1111/j.1749-6632.1981.tb15501.x. [DOI] [PubMed] [Google Scholar]
- Honma Y., Hozumi M., Abe E., Konno K., Fukushima M., Hata S., Nishii Y., DeLuca H. F., Suda T. 1 alpha,25-Dihydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 prolong survival time of mice inoculated with myeloid leukemia cells. Proc Natl Acad Sci U S A. 1983 Jan;80(1):201–204. doi: 10.1073/pnas.80.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honma Y., Takenaga K., Kasukabe T., Hozumi M. Induction of differentiation of cultured human promyelocytic leukemia cells by retinoids. Biochem Biophys Res Commun. 1980 Jul 31;95(2):507–512. doi: 10.1016/0006-291x(80)90813-x. [DOI] [PubMed] [Google Scholar]
- Koeffler H. P., Bar-Eli M., Territo M. C. Phorbol ester effect on differentiation of human myeloid leukemia cell lines blocked at different stages of maturation. Cancer Res. 1981 Mar;41(3):919–926. [PubMed] [Google Scholar]
- Kream B. E., Jose M., Yamada S., DeLuca H. F. A specific high-affinity binding macromolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Science. 1977 Sep 9;197(4308):1086–1088. doi: 10.1126/science.887939. [DOI] [PubMed] [Google Scholar]
- Lotem J., Sachs L. Regulation of normal differentiation in mouse and human myeloid leukemic cells by phorbol esters and the mechanism of tumor promotion. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5158–5162. doi: 10.1073/pnas.76.10.5158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Major P. P., Griffin J. D., Minden M., Kufe D. W. A blast subclone of the HL-60 human promyelocytic cell line. Leuk Res. 1981;5(4-5):429–430. doi: 10.1016/0145-2126(81)90018-7. [DOI] [PubMed] [Google Scholar]
- Manolagas S. C., Haussler M. R., Deftos L. J. 1,25-Dihydroxyvitamin D3 receptor-like macromolecule in rat osteogenic sarcoma cell lines. J Biol Chem. 1980 May 25;255(10):4414–4417. [PubMed] [Google Scholar]
- Miyaura C., Abe E., Kuribayashi T., Tanaka H., Konno K., Nishii Y., Suda T. 1 alpha,25-Dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun. 1981 Oct 15;102(3):937–943. doi: 10.1016/0006-291x(81)91628-4. [DOI] [PubMed] [Google Scholar]
- Nelson R. D., Ackerman S. K., Fiegel V. D., Bauman M. P., Douglas S. D. Cytotaxin receptors of neutrophils: evidence that F-methionyl peptides and pepstatin share a common receptor. Infect Immun. 1979 Dec;26(3):996–999. doi: 10.1128/iai.26.3.996-999.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson-Delafield J., Lehrer R. I. A simple microscopic method for identifying and quantitating phagocytic cells in vitro. J Immunol Methods. 1977;18(3-4):377–379. doi: 10.1016/0022-1759(77)90191-0. [DOI] [PubMed] [Google Scholar]
- Pike J. W., Donaldson C. A., Marion S. L., Haussler M. R. Development of hybridomas secreting monoclonal antibodies to the chicken intestinal 1 alpha,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7719–7723. doi: 10.1073/pnas.79.24.7719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pike J. W., Goozé L. L., Haussler M. R. Biochemical evidence for 1,25-dihydroxyvitamin D receptor macromolecules in parathyroid, pancreatic, pituitary, and placental tissues. Life Sci. 1980 Feb 4;26(5):407–414. doi: 10.1016/0024-3205(80)90158-7. [DOI] [PubMed] [Google Scholar]
- Pike J. W., Haussler M. R. Association of 1,25-dihydroxyvitamin D3 with cultured 3T6 mouse fibroblasts. Cellular uptake and receptor-mediated migration to the nucleus. J Biol Chem. 1983 Jul 25;258(14):8554–8560. [PubMed] [Google Scholar]
- Pike J. W., Haussler M. R. Purification of chicken intestinal receptor for 1,25-dihydroxyvitamin D. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5485–5489. doi: 10.1073/pnas.76.11.5485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santi D. V., Sibley C. H., Perriard E. R., Tomkins G. M., Baxter J. D. A filter assay for steroid hormone receptors. Biochemistry. 1973 Jun 19;12(13):2412–2416. doi: 10.1021/bi00737a007. [DOI] [PubMed] [Google Scholar]
- Segal A. W. Nitroblue-tetrazolium tests. Lancet. 1974 Nov 23;2(7891):1248–1252. doi: 10.1016/s0140-6736(74)90758-2. [DOI] [PubMed] [Google Scholar]
- Spencer R., Charman M., Lawson D. E., Emtage J. S. Production and properties of vitamin-D-induced mRNA for chick calcium-binding protein. Eur J Biochem. 1976 Dec 11;71(2):399–409. doi: 10.1111/j.1432-1033.1976.tb11127.x. [DOI] [PubMed] [Google Scholar]
- Stumpf W. E., Sar M., Reid F. A., Tanaka Y., DeLuca H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979 Dec 7;206(4423):1188–1190. doi: 10.1126/science.505004. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Abe E., Miyaura C., Kuribayashi T., Konno K., Nishii Y., Suda T. 1 alpha,25-Dihydroxycholecalciferol and a human myeloid leukaemia cell line (HL-60). Biochem J. 1982 Jun 15;204(3):713–719. doi: 10.1042/bj2040713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Territo M. C., Cline M. J. Monocyte function in man. J Immunol. 1977 Jan;118(1):187–192. [PubMed] [Google Scholar]
- Willcox M. B., Golde D. W., Cline M. J. Cytochemical reactions of human hematopoietic cells in liquid culture. J Histochem Cytochem. 1976 Sep;24(9):979–983. doi: 10.1177/24.9.61241. [DOI] [PubMed] [Google Scholar]
- Williams L. T., Snyderman R., Pike M. C., Lefkowitz R. J. Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1204–1208. doi: 10.1073/pnas.74.3.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood P. A., Douglas S. D. Development of chemotaxis and formyl peptide binding in human promyelocytic leukemia cell line (HL60). Proc Soc Exp Biol Med. 1982 Apr;169(4):421–426. doi: 10.3181/00379727-169-41369. [DOI] [PubMed] [Google Scholar]
- Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]
- Yamanouchi T., Tsushima T., Murakami H., Sato Y., Shizume K., Oshimi K., Mizoguchi H. Differentiation of human promyelocytic leukemia cells is accompanied by an increase in insulin receptors. Biochem Biophys Res Commun. 1982 Sep 16;108(1):414–420. doi: 10.1016/0006-291x(82)91882-4. [DOI] [PubMed] [Google Scholar]