Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Feb 1;98(2):427–435. doi: 10.1083/jcb.98.2.427

Induction of muscle genes in neural cells

PMCID: PMC2113106  PMID: 6693489

Abstract

The regulation of skeletal muscle genes was examined in heterokaryons formed by fusing differentiated chick skeletal myocytes to four different rat neural cell lines. Highly enriched populations of heterokaryons isolated using irreversible biochemical inhibitors were labeled with [35S]methionine and analyzed on two-dimensional gels. Rat skeletal myosin light chains were induced in three of the four cell combinations. The one exception, the S-20 cholinergic cell line, not only failed to synthesize rat muscle proteins but also suppressed chick myogenic functions. Experiments with heterokaryons between chick myocytes and cells from whole embryonic rat brain cultures demonstrated that rat skeletal myosin light chains are inducible in normal diploid neural cells as well as in established neural cell lines. In contrast, dividing cell hybrids between rat myoblasts and rat glial cells were nonmyogenic. These results demonstrate that although neural cells may contain factors that prevent the decision to differentiate along myogenic lines in cell hybrids, most neural cell lines do not dominantly suppress the expression of muscle structural genes in heterokaryons. Furthermore, the skeletal myosin light chain genes in most neural cell lines are regulated by a mechanism that permits them to respond to putative chick skeletal myocyte-inducing factors. The "open" state of these myogenic genes may explain many of the reports of apparent "transdifferentiation" to muscle in neural cultures and neural tumors.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. L., Burdon R. H. DNA methylation in eukaryotes. CRC Crit Rev Biochem. 1982;13(4):349–384. doi: 10.3109/10409238209108714. [DOI] [PubMed] [Google Scholar]
  2. Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
  4. Bischoff R., Holtzer H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J Cell Biol. 1970 Jan;44(1):134–150. doi: 10.1083/jcb.44.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brunner G., Tschank G. Contracting striated muscle fibres differentiated from primary rat pituitary cultures. Cell Tissue Res. 1982;224(3):655–662. doi: 10.1007/BF00213760. [DOI] [PubMed] [Google Scholar]
  6. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  7. Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
  8. Clark W. A., Jr, Chizzonite R. A., Everett A. W., Rabinowitz M., Zak R. Species correlations between cardiac isomyosins. A comparison of electrophoretic and immunological properties. J Biol Chem. 1982 May 25;257(10):5449–5454. [PubMed] [Google Scholar]
  9. Cohen A., Buckingham M., Gros F. A modified assay procedure for revealing the M form of creatine kinase in cultured muscle cells. Exp Cell Res. 1978 Aug;115(1):201–206. doi: 10.1016/0014-4827(78)90417-2. [DOI] [PubMed] [Google Scholar]
  10. Cox D. M., Niewczas-Late V., Riffell M. I., Hamerton J. L. Chromosomal mosaicism in diagnostic amniotic fluid cell cultures. Pediatr Res. 1974 Jun;8(6):679–683. doi: 10.1203/00006450-197406000-00009. [DOI] [PubMed] [Google Scholar]
  11. De Vitry F., Picart R., Jacque C., Legault L., Dupouey P., Tixier-Vidal A. Presumptive common precursor for neuronal and glial cell lineages in mouse hypothalamus. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4165–4169. doi: 10.1073/pnas.77.7.4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devreotes P. N., Fambrough D. M. Acetylcholine receptor turnover in membranes of developing muscle fibers. J Cell Biol. 1975 May;65(2):335–358. doi: 10.1083/jcb.65.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diehl B. J. Occurrence and regional distribution of striated muscle fibers in the rat pineal gland. Cell Tissue Res. 1978 Jul 5;190(2):349–355. doi: 10.1007/BF00218180. [DOI] [PubMed] [Google Scholar]
  14. Drachman D. B. The biology of myasthenia gravis. Annu Rev Neurosci. 1981;4:195–225. doi: 10.1146/annurev.ne.04.030181.001211. [DOI] [PubMed] [Google Scholar]
  15. Goldman R. L. Gliomyosarcoma of the cerebrum. Report of a unique case. Am J Clin Pathol. 1969 Dec;52(6):741–744. doi: 10.1093/ajcp/52.6.741. [DOI] [PubMed] [Google Scholar]
  16. Klinger H. P., Shin S. I. Modulation of the activity of an avian gene transferred into a mammalian cell by cell fusion. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1398–1402. doi: 10.1073/pnas.71.4.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Konieczny S. F., Coleman J. R. Analysis of the expression of chicken and rat gene products in myoblast x myoblast cell hybrids. Exp Cell Res. 1982 Dec;142(2):247–260. doi: 10.1016/0014-4827(82)90366-4. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lawrence J. B., Konieczny S. F., Shaffer M., Coleman A. W., Coleman J. R. Analysis of myogenesis by somatic cell hybridization. I. Myogenic competence of homotypic hybrids derived from rat L6 myoblasts. Exp Cell Res. 1982 Dec;142(2):261–272. doi: 10.1016/0014-4827(82)90367-6. [DOI] [PubMed] [Google Scholar]
  20. Lennon V. A., Peterson S., Schubert D. Neurectoderm markers retained in phenotypical skeletal muscle cells arising from a glial cell line. Nature. 1979 Oct 18;281(5732):586–588. doi: 10.1038/281586a0. [DOI] [PubMed] [Google Scholar]
  21. Lipow K., Horoupian D. S., Raine C. S. On the occurrence of striated muscle within the spinal leptomeninges. Muscle Nerve. 1978 Jul-Aug;1(4):322–329. doi: 10.1002/mus.880010410. [DOI] [PubMed] [Google Scholar]
  22. Lough J., Bischoff R. Differential sensitivity to 5-bromodeoxyuridine during the S phase of synchronized myogenic cells. Dev Biol. 1976 Jun;50(2):457–475. doi: 10.1016/0012-1606(76)90165-2. [DOI] [PubMed] [Google Scholar]
  23. Mandel J. L., Pearson M. L. Insulin stimulates myogenesis in a rat myoblast line. Nature. 1974 Oct 18;251(5476):618–620. doi: 10.1038/251618a0. [DOI] [PubMed] [Google Scholar]
  24. Moss P. S., Strohman R. C. Myosin synthesis by fusion-arrested chick embryo myoblasts in cell culture. Dev Biol. 1976 Feb;48(2):431–437. doi: 10.1016/0012-1606(76)90104-4. [DOI] [PubMed] [Google Scholar]
  25. Nomura K., Takagi S., Okada T. S. Expression of neuronal specificities in "transdifferentiating" cultures of neural retina. Differentiation. 1980 Jun;16(3):141–147. doi: 10.1111/j.1432-0436.1980.tb01070.x. [DOI] [PubMed] [Google Scholar]
  26. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  27. Schubert D., Heinemann S., Carlisle W., Tarikas H., Kimes B., Patrick J., Steinbach J. H., Culp W., Brandt B. L. Clonal cell lines from the rat central nervous system. Nature. 1974 May 17;249(454):224–227. doi: 10.1038/249224a0. [DOI] [PubMed] [Google Scholar]
  28. Stallcup W. B., Cohn M. Correlation of surface antigens and cell type in cloned cell lines from the rat central nervous system. Exp Cell Res. 1976 Mar 15;98(2):285–297. doi: 10.1016/0014-4827(76)90440-7. [DOI] [PubMed] [Google Scholar]
  29. Szutowicz A., Morrison M. R., Srere P. A. The enzymes of acetyl-CoA metabolism in differentiating cholinergic (s-20) and noncholinergic (NIE-115) neuroblastoma cells. J Neurochem. 1983 Jun;40(6):1664–1670. doi: 10.1111/j.1471-4159.1983.tb08140.x. [DOI] [PubMed] [Google Scholar]
  30. Teng N. N., Fiszman M. Y. Appearance of acetylcholine receptors in cultured myoblasts prior to fusion. J Supramol Struct. 1976;4(3):381–387. doi: 10.1002/jss.400040309. [DOI] [PubMed] [Google Scholar]
  31. Ternynck T., Avrameas S. Conjugation of p-benzoquinone treated enzymes with antibodies and Fab fragments. Immunochemistry. 1977 Nov-Dec;14(11-12):767–774. doi: 10.1016/0019-2791(77)90352-4. [DOI] [PubMed] [Google Scholar]
  32. Vertel B. M., Fischman D. A. Myosin accumulation in mononucleated cells of chick muscle cultures. Dev Biol. 1976 Feb;48(2):438–446. doi: 10.1016/0012-1606(76)90105-6. [DOI] [PubMed] [Google Scholar]
  33. Wekerle T. H., paterson B., Ketelsen U., Feldman M. Striated muscle fibres differentiate in monolayer cultures of adult thymus reticulum. Nature. 1975 Aug 7;256(5517):493–494. doi: 10.1038/256493a0. [DOI] [PubMed] [Google Scholar]
  34. Wier M. L., Lennon V. A. Differentiation of skeletal muscle from dissociated optic nerve cells. Immunocytochemical observations. J Neuroimmunol. 1981 Mar;1(1):61–68. doi: 10.1016/0165-5728(81)90008-4. [DOI] [PubMed] [Google Scholar]
  35. Wright W. E., Aronoff J. Regulation of rat myosin light-chain synthesis in heterokaryons between 5-bromodeoxyuridine-blocked rat myoblasts and differentiated chick myocytes. J Cell Biol. 1983 Jun;96(6):1571–1579. doi: 10.1083/jcb.96.6.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wright W. E., Aronoff J. The suppression of myogenic functions in heterokaryons formed by fusing chick myocytes to diploid rat fibroblasts. Cell Differ. 1983 May;12(5):299–306. doi: 10.1016/0045-6039(83)90026-x. [DOI] [PubMed] [Google Scholar]
  37. Wright W. E., Gros F. Coexpression of myogenic functions in L6 rat x T984 mouse myoblast hybrids. Dev Biol. 1981 Aug;86(1):236–240. doi: 10.1016/0012-1606(81)90335-3. [DOI] [PubMed] [Google Scholar]
  38. Wright W. E. Induction of myosin light chain synthesis in heterokaryons between normal diploid cells. In Vitro. 1982 Oct;18(10):851–858. doi: 10.1007/BF02796326. [DOI] [PubMed] [Google Scholar]
  39. Wright W. E. Recovery of heterokaryons at high cell densities following isolation using irreversible biochemical inhibitors. Somatic Cell Genet. 1981 Nov;7(6):769–775. doi: 10.1007/BF01538763. [DOI] [PubMed] [Google Scholar]
  40. Wright W. E. Synthesis of rat myosin light chains in heterokaryons formed between undifferentiated rat myoblasts and chick skeletal myocytes. J Cell Biol. 1981 Oct;91(1):11–16. doi: 10.1083/jcb.91.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wright W. E. The isolation of heterokaryons and hybrids by a selective system using irreversible biochemical inhibitors. Exp Cell Res. 1978 Mar 15;112(2):395–407. doi: 10.1016/0014-4827(78)90222-7. [DOI] [PubMed] [Google Scholar]
  42. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES