Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Feb 1;98(2):717–724. doi: 10.1083/jcb.98.2.717

Microspectrofluorometry by digital image processing: measurement of cytoplasmic pH

PMCID: PMC2113113  PMID: 6198329

Abstract

An interface of our microspectrofluorometer with an image processing system performs microspectrofluorometric measurements in living cells by digital image processing. Fluorescence spectroscopic parameters can be measured by digital image processing directly from microscopic images of cells, and are automatically normalized for pathlength and accessible volume. Thus, an accurate cytoplasmic "map" of various spectroscopic parameters can be produced. The resting cytoplasmic pH of fibroblasts (3T3 cells) has been determined by measuring the ratio of fluorescein fluorescence exited by two successive wavelengths (489 and 452 nm). Fluorescein-labeled dextran microinjected into the cells is used as a pH indicator, since it is trapped in the cytoplasm but is excluded from the nucleus and other organelles. The average cytoplasmic pH is 6.83 (+/- 0.38). However, cytoplasmic pH exhibits a nonunimodal distribution, the lower mean pH being 6.74 (+/- 0.23). When 3T3 cells pinocytose medium containing fluorescein dextran, pinosomes peripheral to the nucleus exhibit a lower pH than those closer to the ruffling edge of the cell. The present image processing system is analyzed for linearity of detection, light scattering artifacts, signal to noise ratio, standard curves, and spatial resolution. The results obtained from digital image analysis are shown to be comparable to the results from standard microspectrofluorometry. We also discuss several other applications of this ratio imaging technique in cell biology.

Full Text

The Full Text of this article is available as a PDF (918.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. A., Baron D. N. Intracellular pH measured in isolated normal human leucocytes, by using 5,5-dimethyl-2,4-oxazolidinedione under conditions of varying extracellular PCo 2 NS BICARBONATE. Clin Sci. 1971 Jun;40(6):487–495. doi: 10.1042/cs0400487. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., Allen N. S., Travis J. L. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1981;1(3):291–302. doi: 10.1002/cm.970010303. [DOI] [PubMed] [Google Scholar]
  3. Allen R. D., Allen N. S. Video-enhanced microscopy with a computer frame memory. J Microsc. 1983 Jan;129(Pt 1):3–17. doi: 10.1111/j.1365-2818.1983.tb04157.x. [DOI] [PubMed] [Google Scholar]
  4. Amato P. A., Unanue E. R., Taylor D. L. Distribution of actin in spreading macrophages: a comparative study on living and fixed cells. J Cell Biol. 1983 Mar;96(3):750–761. doi: 10.1083/jcb.96.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deutsch C. J., Holian A., Holian S. K., Daniele R. P., Wilson D. F. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes. J Cell Physiol. 1979 Apr;99(1):79–93. doi: 10.1002/jcp.1040990110. [DOI] [PubMed] [Google Scholar]
  6. Dvorak J. A., Miller L. H., Whitehouse W. C., Shiroishi T. Invasion of erythrocytes by malaria merozoites. Science. 1975 Feb 28;187(4178):748–750. doi: 10.1126/science.803712. [DOI] [PubMed] [Google Scholar]
  7. Fernandez S. M., Berlin R. D. Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature. 1976 Dec 2;264(5585):411–415. doi: 10.1038/264411a0. [DOI] [PubMed] [Google Scholar]
  8. Gerson D. F., Kiefer H., Eufe W. Intracellular pH of mitogen-stimulated lymphocytes. Science. 1982 May 28;216(4549):1009–1010. doi: 10.1126/science.6281887. [DOI] [PubMed] [Google Scholar]
  9. Gilkey J. C., Jaffe L. F., Ridgway E. B., Reynolds G. T. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978 Feb;76(2):448–466. doi: 10.1083/jcb.76.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heiple J. M., Taylor D. L. Intracellular pH in single motile cells. J Cell Biol. 1980 Sep;86(3):885–890. doi: 10.1083/jcb.86.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heiple J. M., Taylor D. L. pH changes in pinosomes and phagosomes in the ameba, Chaos carolinensis. J Cell Biol. 1982 Jul;94(1):143–149. doi: 10.1083/jcb.94.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hotani H. Micro-video study of moving bacterial flagellar filaments. I. Passive rotation by hydrodynamic force in vitro. J Mol Biol. 1979 Apr 5;129(2):305–318. doi: 10.1016/0022-2836(79)90284-5. [DOI] [PubMed] [Google Scholar]
  13. Inoué S. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J Cell Biol. 1981 May;89(2):346–356. doi: 10.1083/jcb.89.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koppel D. E., Oliver J. M., Berlin R. D. Surface functions during mitosis. III. Quantitative analysis of ligand-receptor movement into the cleavage furrow: diffusion vs. flow. J Cell Biol. 1982 Jun;93(3):950–960. doi: 10.1083/jcb.93.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levin G. E., Collinson P., Baron D. N. The intracellular pH of human leucocytes in response to acid-base changes in vitro. Clin Sci Mol Med. 1976 Apr;50(4):293–299. doi: 10.1042/cs0500293. [DOI] [PubMed] [Google Scholar]
  16. McNeil P. L., Tanasugarn L., Meigs J. B., Taylor D. L. Acidification of phagosomes is initiated before lysosomal enzyme activity is detected. J Cell Biol. 1983 Sep;97(3):692–702. doi: 10.1083/jcb.97.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murphy R. F., Jorgensen E. D., Cantor C. R. Kinetics of histone endocytosis in Chinese hamster ovary cells. A flow cytofluorometric analysis. J Biol Chem. 1982 Feb 25;257(4):1695–1701. [PubMed] [Google Scholar]
  18. Murphy R. F., Powers S., Verderame M., Cantor C. R., Pollack R. Flow cytofluorometric analysis of insulin binding and internalization by Swiss 3T3 cells. Cytometry. 1982 May;2(6):402–406. doi: 10.1002/cyto.990020608. [DOI] [PubMed] [Google Scholar]
  19. Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reynolds G. T. Image intensification applied to biological problems. Q Rev Biophys. 1972 Aug;5(3):295–347. doi: 10.1017/s0033583500000974. [DOI] [PubMed] [Google Scholar]
  22. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  24. Schatten H., Schatten G. Surface activity at the egg plasma membrane during sperm incorporation and its cytochalasin B sensitivity. Scanning electron microscopy and time-lapse video microscopy during fertilization of the sea urchin Lytechinus variegatus. Dev Biol. 1980 Aug;78(2):435–449. doi: 10.1016/0012-1606(80)90345-0. [DOI] [PubMed] [Google Scholar]
  25. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Taylor D. L., Blinks J. R., Reynolds G. Contractile basis of ameboid movement. VII. Aequorin luminescence during ameboid movement, endocytosis, and capping. J Cell Biol. 1980 Aug;86(2):599–607. doi: 10.1083/jcb.86.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taylor D. L., Reidler J., Spudich J. A., Stryer L. Detection of actin assembly by fluorescence energy transfer. J Cell Biol. 1981 May;89(2):362–367. doi: 10.1083/jcb.89.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor D. L., Wang Y. L. Fluorescently labelled molecules as probes of the structure and function of living cells. Nature. 1980 Apr 3;284(5755):405–410. doi: 10.1038/284405a0. [DOI] [PubMed] [Google Scholar]
  29. Taylor D. L., Wang Y. L., Heiple J. M. Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amebas. J Cell Biol. 1980 Aug;86(2):590–598. doi: 10.1083/jcb.86.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  31. Wang Y. L., Heiple J. M., Taylor D. L. Fluorescent analog cytochemistry of contractile proteins. Methods Cell Biol. 1982;25(Pt B):1–11. [PubMed] [Google Scholar]
  32. Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]
  33. Zieve P. D., Haghshenass M., Krevans J. R. Intracellular pH of the human lymphocyte. Am J Physiol. 1967 May;212(5):1099–1102. doi: 10.1152/ajplegacy.1967.212.5.1099. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES