Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Mar 1;98(3):834–846. doi: 10.1083/jcb.98.3.834

Membrane-associated actin in the rhabdomeral microvilli of crayfish photoreceptors

PMCID: PMC2113125  PMID: 6538203

Abstract

Infiltration of compound eyes of crayfish, Cherax destructor, with the thiol protease inhibitor Ep-475 or with trifluoperazine prior to fixation for electron microscopy was found to stabilize an axial filament of 6-12 nm diam within each rhabdomeral microvillus of the photoreceptors. Rhabdoms isolated from retinal homogenates by sucrose gradient centrifugation under conditions that stabilize cytoskeletal material contained large amounts of a 42-kd polypeptide that co- migrated with insect flight muscle actin in one- and two-dimensional PAGE, inhibited pancreatic DNase l, and bound to vertebrate myosin. Vertebrate skeletal muscle actin added to retinal homogenates did not co-purify with rhabdoms, implying that actin was not a contaminant from nonmembranous structures. DNase l inhibition assays of detergent-lysed rhabdoms indicated the presence of large amounts of filamentous actin provided ATP was present. Monomeric actin in such preparations was completely polymerizable only after 90 min incubation with equimolar phalloidin. More than half of the actin present could be liberated from the membrane by sonication, indicating a loose association with the membrane. However, a large proportion of the actin was tightly bound to the rhabdomeral membrane, and washing sonicated membrane fractions with solutions of a range of ionic strengths and nonionic detergents failed to remove it. Antibodies to scallop actin only bound to frozen sections of rhabdoms after gentle permeabilization and very long incubation periods, probably because of steric hindrance and the hydrophobicity of the structure. The F-actin probe nitrobenzoxadiazol phallacidin bound to rhabdoms and labeled F-actin aggregates in other retinal components, but rhabdom fluorescence was not abolished by preincubation with phalloidin. The biochemical data indicate the existence of two distinct actin-based cytoskeletal systems, one being closely membrane associated. The other may possibly constitute the axial filament, although the evidence for this is equivocal.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F., Nikaido K. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 1976 Feb 10;15(3):616–623. doi: 10.1021/bi00648a026. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. E., Benolken R. M., Kelleher P. A., Maude M. B., Wiegand R. D. Chemistry of photoreceptor membrane preparations from squid retinas. Biochim Biophys Acta. 1978 Jul 4;510(2):316–326. doi: 10.1016/0005-2736(78)90032-9. [DOI] [PubMed] [Google Scholar]
  3. Barak L. S., Yocum R. R. 7-Nitrobenz-2-oxa-1,3-diazole (NBD)--phallacidin: synthesis of a fluorescent actin probe. Anal Biochem. 1981 Jan 1;110(1):31–38. doi: 10.1016/0003-2697(81)90107-x. [DOI] [PubMed] [Google Scholar]
  4. Barber B. H., Crumpton M. J. Actin associated with purified lymphocyte plasma membrane. FEBS Lett. 1976 Jul 15;66(2):215–220. doi: 10.1016/0014-5793(76)80507-8. [DOI] [PubMed] [Google Scholar]
  5. Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
  6. Blest A. D., De Couet H. G. Actin in cellular components of the basement membrane of the compound eye of a blowfly. Cell Tissue Res. 1983;231(2):325–336. doi: 10.1007/BF00222184. [DOI] [PubMed] [Google Scholar]
  7. Blest A. D., De Couet H. G., Sigmund C. The cytoskeleton of microvilli of leech photoreceptors. A stable bundle of actin microfilaments. Cell Tissue Res. 1983;234(1):9–16. doi: 10.1007/BF00217398. [DOI] [PubMed] [Google Scholar]
  8. Blest A. D., Stowe S., Eddey W. A labile, Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies. Cell Tissue Res. 1982;223(3):553–573. doi: 10.1007/BF00218476. [DOI] [PubMed] [Google Scholar]
  9. Blest A. D., Stowe S., Eddey W., Williams D. S. The local deletion of a microvillar cytoskeleton from photoreceptors of tipulid flies during membrane turnover. Proc R Soc Lond B Biol Sci. 1982 Jul 22;215(1201):469–479. doi: 10.1098/rspb.1982.0054. [DOI] [PubMed] [Google Scholar]
  10. Blikstad I., Carlsson L. On the dynamics of the microfilament system in HeLa cells. J Cell Biol. 1982 Apr;93(1):122–128. doi: 10.1083/jcb.93.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
  12. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  13. Burridge K., Kelly T., Mangeat P. Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol. 1982 Nov;95(2 Pt 1):478–486. doi: 10.1083/jcb.95.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carraway C. A., Jung G., Carraway K. L. Isolation of actin-containing transmembrane complexes from ascites adenocarcinoma sublines having mobile and immobile receptors. Proc Natl Acad Sci U S A. 1983 Jan;80(2):430–434. doi: 10.1073/pnas.80.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Carraway K. L., Cerra R. F., Jung G., Carraway C. A. Membrane-associated actin from the microvillar membranes of ascites tumor cells. J Cell Biol. 1982 Sep;94(3):624–630. doi: 10.1083/jcb.94.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Condeelis J. Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin. J Cell Biol. 1979 Mar;80(3):751–758. doi: 10.1083/jcb.80.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Coudrier E., Reggio H., Louvard D. Characterization of an integral membrane glycoprotein associated with the microfilaments of pig intestinal microvilli. EMBO J. 1983;2(3):469–475. doi: 10.1002/j.1460-2075.1983.tb01446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Coudrier E., Reggio H., Louvard D. Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli. J Mol Biol. 1981 Oct 15;152(1):49–66. doi: 10.1016/0022-2836(81)90095-4. [DOI] [PubMed] [Google Scholar]
  19. De Couet H. G. Studies on the antigenic sites of actin: a comparative study of the immunogenic crossreactivity of invertebrate actins. J Muscle Res Cell Motil. 1983 Aug;4(4):405–427. doi: 10.1007/BF00711947. [DOI] [PubMed] [Google Scholar]
  20. Eagles P. A., Gilbert D. S., Maggs A. The location of phosphorylation sites and Ca2+-dependent proteolytic cleavage sites on the major neurofilament polypeptides from Myxicola infundibulum. Biochem J. 1981 Oct 1;199(1):101–111. doi: 10.1042/bj1990101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Estes J. E., Selden L. A., Gershman L. C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 1981 Feb 17;20(4):708–712. doi: 10.1021/bi00507a006. [DOI] [PubMed] [Google Scholar]
  22. Flanagan J., Koch G. L. Cross-linked surface Ig attaches to actin. Nature. 1978 May 25;273(5660):278–281. doi: 10.1038/273278a0. [DOI] [PubMed] [Google Scholar]
  23. Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
  24. Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Goldsmith T. H., Wehner R. Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol. 1977 Oct;70(4):453–490. doi: 10.1085/jgp.70.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gruenstein E., Rich A., Weihing R. R. Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells. J Cell Biol. 1975 Jan;64(1):223–234. doi: 10.1083/jcb.64.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hafner G. S., Bok D. The distribution of 3H-leucine labeled protein in the retinula cells of the crayfish retina. J Comp Neurol. 1977 Aug 1;174(3):397–416. doi: 10.1002/cne.901740303. [DOI] [PubMed] [Google Scholar]
  28. Hafner G. S., Tokarski T., Hammond-Soltis G. Development of the crayfish retina: a light and electron microscopic study. J Morphol. 1982 Jul;173(1):101–108. doi: 10.1002/jmor.1051730109. [DOI] [PubMed] [Google Scholar]
  29. Koch G. L., Smith M. J. An association between actin and the major histocompatibility antigen H-2. Nature. 1978 May 25;273(5660):274–278. doi: 10.1038/273274a0. [DOI] [PubMed] [Google Scholar]
  30. Korn E. D., Wright P. L. Macromolecular composition of an amoeba plasma membrane. J Biol Chem. 1973 Jan 25;248(2):439–447. [PubMed] [Google Scholar]
  31. Krauhs J. M., Mahler H. R., Moore W. J. Protein turnover in photoreceptor cells of isolated Limulus lateral eyes. J Neurochem. 1978 Mar;30(3):625–632. doi: 10.1111/j.1471-4159.1978.tb07817.x. [DOI] [PubMed] [Google Scholar]
  32. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Larrivee D., Goldsmith T. H. Isolation of crayfish rhabdoms. Methods Enzymol. 1982;81:34–37. doi: 10.1016/s0076-6879(82)81006-9. [DOI] [PubMed] [Google Scholar]
  35. LeVine H., 3rd, Sahyoun N. E., Cuatrecasas P. Properties of rat erythrocyte membrane cytoskeletal structures produced by digitonin extraction: digitonin-insoluble beta-adrenergic receptor, adenylate cyclase, and cholera toxin substrate. J Membr Biol. 1982;64(3):225–231. doi: 10.1007/BF01870889. [DOI] [PubMed] [Google Scholar]
  36. Lengsfeld A. M., Löw I., Wieland T., Dancker P., Hasselbach W. Interaction of phalloidin with actin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2803–2807. doi: 10.1073/pnas.71.7.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Luna E. J., Fowler V. M., Swanson J., Branton D., Taylor D. L. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity. J Cell Biol. 1981 Feb;88(2):396–409. doi: 10.1083/jcb.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mannherz H. G., Leigh J. B., Leberman R., Pfrang H. A specific 1:1 G-actin:DNAase i complex formed by the action of DNAase I on F-actin. FEBS Lett. 1975 Dec 1;60(1):34–38. doi: 10.1016/0014-5793(75)80412-1. [DOI] [PubMed] [Google Scholar]
  39. Matsudaira P. T., Burgess D. R. Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol. 1979 Dec;83(3):667–673. doi: 10.1083/jcb.83.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mescher M. F., Jose M. J., Balk S. P. Actin-containing matrix associated with the plasma membrane of murine tumour and lymphoid cells. Nature. 1981 Jan 15;289(5794):139–144. doi: 10.1038/289139a0. [DOI] [PubMed] [Google Scholar]
  42. Moore P. B., Ownby C. L., Carraway K. L. Interactions of cytoskeletal elements with the plasma membrane of sarcoma180 ascites tumor cells. Exp Cell Res. 1978 Sep;115(2):331–342. doi: 10.1016/0014-4827(78)90287-2. [DOI] [PubMed] [Google Scholar]
  43. Mukherjee T. M., Staehelin L. A. The fine-structural organization of the brush border of intestinal epithelial cells. J Cell Sci. 1971 May;8(3):573–599. doi: 10.1242/jcs.8.3.573. [DOI] [PubMed] [Google Scholar]
  44. Nothnagel E. A., Barak L. S., Sanger J. W., Webb W. W. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara. J Cell Biol. 1981 Feb;88(2):364–372. doi: 10.1083/jcb.88.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  46. Pollard T. D., Korn E. D. Electron microscopic identification of actin associated with isolated amoeba plasma membranes. J Biol Chem. 1973 Jan 25;248(2):448–450. [PubMed] [Google Scholar]
  47. Saibil H. R. An ordered membrane-cytoskeleton network in squid photoreceptor microvilli. J Mol Biol. 1982 Jul 5;158(3):435–456. doi: 10.1016/0022-2836(82)90208-x. [DOI] [PubMed] [Google Scholar]
  48. Sheetz M. P. DNase-I-dependent dissociation of erythrocyte cytoskeletons. J Cell Biol. 1979 Apr;81(1):266–270. doi: 10.1083/jcb.81.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Stein P. J., Brammer J. D., Ostroy S. E. Renewal of opsin in the photoreceptor cells of the mosquito. J Gen Physiol. 1979 Nov;74(5):565–582. doi: 10.1085/jgp.74.5.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stowe S. Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res. 1980;211(3):419–440. doi: 10.1007/BF00234397. [DOI] [PubMed] [Google Scholar]
  52. Tamai M., Hanada K., Adachi T., Oguma K., Kashiwagi K., Omura S., Ohzeki M. Papain inhibitions by optically active E-64 analogs. J Biochem. 1981 Jul;90(1):255–257. doi: 10.1093/oxfordjournals.jbchem.a133458. [DOI] [PubMed] [Google Scholar]
  53. Tilney L. G., Jaffe L. A. Actin, microvilli, and the fertilization cone of sea urchin eggs. J Cell Biol. 1980 Dec;87(3 Pt 1):771–782. doi: 10.1083/jcb.87.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Varela F. G., Porter K. R. Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. J Ultrastruct Res. 1969 Nov;29(3):236–259. doi: 10.1016/s0022-5320(69)90104-x. [DOI] [PubMed] [Google Scholar]
  55. Winterhager E., Stieve H. Effect of hyper-and hypoosmotic solutions on the structure of the Astacus retina. A transmission electron-microscopic study. Cell Tissue Res. 1982;223(2):267–280. doi: 10.1007/BF01258488. [DOI] [PubMed] [Google Scholar]
  56. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  57. Wu E. S., Tank D. W., Webb W. W. Unconstrained lateral diffusion of concanavalin A receptors on bulbous lymphocytes. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4962–4966. doi: 10.1073/pnas.79.16.4962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. de Couet H. G., Mazander K. D., Gröschel-Stewart U. A study of invertebrate actins by isoelectric focusing and immunodiffusion. Experientia. 1980 Apr 15;36(4):404–405. doi: 10.1007/BF01975112. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES