Abstract
The directional polymerization of actin on the erythrocyte membrane has been examined at various concentrations of G-actin by thin-section electron microscopy. For this purpose, a new experimental system using single-layered erythrocyte membranes with the cytoplasmic surfaces freely exposed was developed. The preformed actin filaments did not bind with the cytoplasmic surface of the erythrocyte membranes. When the erythrocyte membranes were incubated at low concentrations (0.3 and 0.5 microM) of G-actin, greater than 80% of polymerized actin filaments pointed toward the membranes mainly in an end-on fashion, as judged by arrowhead formation with heavy meromyosin. At higher concentrations (2 and 4 microM) of G-actin, about half of the polymerized actin filaments were directed with arrowheads pointing toward the membranes, while the rest of the filaments showed the opposite polarity pointing away from the membranes. The majority of polymerized actin filaments formed loops at the points of attachment to the membranes. In contrast, when G-actin (2 and 4 microM) in the presence of cytochalasin B was polymerized into filaments, approximately 70% showed the polarity pointing away from the membrane mainly in an end-on fashion. To check the treadmilling phenomena, the erythrocyte membranes with bidirectionally polymerized actin filaments were further incubated with G-actin at the overall critical concentration. In this case, almost all (90%) of actin filaments showed the polarity with arrowheads pointing toward the membranes. The results obtained are discussed with special reference to the mode of association of actin filaments with the plasma membrane in general.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anner B., Mossmayer M. Rapid determination of inorganic phosphate in biological systems by a highly sensitive photometric method. Anal Biochem. 1975 May 12;65(1-2):305–309. doi: 10.1016/0003-2697(75)90514-x. [DOI] [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Brenner S. L., Korn E. D. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin. J Biol Chem. 1979 Sep 10;254(17):8620–8627. [PubMed] [Google Scholar]
- Cohen C. M., Branton D. The role of spectrin in erythrocyte membrane-stimulated actin polymerisation. Nature. 1979 May 10;279(5709):163–165. doi: 10.1038/279163a0. [DOI] [PubMed] [Google Scholar]
- Cohen C. M., Foley S. F. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane. J Cell Biol. 1980 Aug;86(2):694–698. doi: 10.1083/jcb.86.2.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen C. M., Jackson P. L., Branton D. Actin--membrane interactions: association of G-actin with the red cell membrane. J Supramol Struct. 1978;9(1):113–124. doi: 10.1002/jss.400090111. [DOI] [PubMed] [Google Scholar]
- Cohen C. M., Tyler J. M., Branton D. Spectrin-actin associations studied by electron microscopy of shadowed preparations. Cell. 1980 Oct;21(3):875–883. doi: 10.1016/0092-8674(80)90451-1. [DOI] [PubMed] [Google Scholar]
- Cooper J. A., Pollard T. D. Methods to measure actin polymerization. Methods Enzymol. 1982;85(Pt B):182–210. doi: 10.1016/0076-6879(82)85021-0. [DOI] [PubMed] [Google Scholar]
- Edds K. T. Microfilament bundles. I. Formation with uniform polarity. Exp Cell Res. 1977 Sep;108(2):452–456. doi: 10.1016/s0014-4827(77)80056-6. [DOI] [PubMed] [Google Scholar]
- Fowler V., Taylor D. L. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980 May;85(2):361–376. doi: 10.1083/jcb.85.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Weber K. F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J Biol Chem. 1982 Aug 25;257(16):9781–9787. [PubMed] [Google Scholar]
- Isenberg G., Leonard K., Jockusch B. M. Structural aspects of vinculin-actin interactions. J Mol Biol. 1982 Jun 25;158(2):231–249. doi: 10.1016/0022-2836(82)90431-4. [DOI] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Jaenicke L. A rapid micromethod for the determination of nitrogen and phosphate in biological material. Anal Biochem. 1974 Oct;61(2):623–627. doi: 10.1016/0003-2697(74)90429-1. [DOI] [PubMed] [Google Scholar]
- Kondo H., Ishiwata S. Uni-directional growth of F-actin. J Biochem. 1976 Jan;79(1):159–171. doi: 10.1093/oxfordjournals.jbchem.a131043. [DOI] [PubMed] [Google Scholar]
- Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin D. C., Lin S. Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979 May;76(5):2345–2349. doi: 10.1073/pnas.76.5.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Pollard T. D., Wharton K. A. Nucleated polymerization of actin from the membrane-associated ends of microvillar filaments in the intestinal brush border. J Cell Biol. 1982 Oct;95(1):223–233. doi: 10.1083/jcb.95.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinder J. C., Gratzer W. B. Structural and dynamic states of actin in the erythrocyte. J Cell Biol. 1983 Mar;96(3):768–775. doi: 10.1083/jcb.96.3.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
- Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
- Shimo-Oka T., Watanabe Y. Stimulation of actomyosin Mg2+-ATPase activity by a brain microtubule-associated protein fraction. High-molecular-weight actin-binding protein is the stimulating factor. J Biochem. 1981 Nov;90(5):1297–1307. doi: 10.1093/oxfordjournals.jbchem.a133595. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Tilney L. G., Bonder E. M., DeRosier D. J. Actin filaments elongate from their membrane-associated ends. J Cell Biol. 1981 Aug;90(2):485–494. doi: 10.1083/jcb.90.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H. Association of actin and 10 nm filaments with the dense body in smooth muscle cells of the chicken gizzard. Cell Tissue Res. 1983;229(2):233–242. doi: 10.1007/BF00214972. [DOI] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H. Cytoskeletal network underlying the human erythrocyte membrane. Thin-section electron microscopy. J Cell Biol. 1980 Jun;85(3):567–576. doi: 10.1083/jcb.85.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H., Kurokawa M., Morimoto K., Sobue K., Kakiuchi S. Binding sites of calmodulin and actin on the brain spectrin, calspectin. J Cell Biol. 1983 Aug;97(2):574–578. doi: 10.1083/jcb.97.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H., Sato S., Nakao M. Electron microscopic study of reassociation of spectrin and actin with the human erythrocyte membrane. J Cell Biol. 1981 Jul;90(1):70–77. doi: 10.1083/jcb.90.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkins J. A., Lin S. Association of actin with chromaffin granule membranes and the effect of cytochalasin B on the polarity of actin filament elongation. Biochim Biophys Acta. 1981 Mar 20;642(1):55–66. doi: 10.1016/0005-2736(81)90137-1. [DOI] [PubMed] [Google Scholar]
- Woodrum D. T., Rich S. A., Pollard T. D. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J Cell Biol. 1975 Oct;67(1):231–237. doi: 10.1083/jcb.67.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]