Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Mar 1;98(3):801–809. doi: 10.1083/jcb.98.3.801

Insulin-induced formation of ruffling membranes of KB cells and its correlation with enhancement of amino acid transport

PMCID: PMC2113160  PMID: 6321519

Abstract

Insulin induced the formation of ruffling membranes in cultured KB cells (a cell strain derived from human epidermoid carcinoma) within 1- 2 min after its addition. The ruffled regions were stained strongly with antibody to actin but not that to tubulin. Pretreatment of KB cells with agents disrupting microfilaments (cytochalasins), but not with those disrupting microtubules (colcemid, nocodazole, and colchicine) completely inhibited the formation of ruffling membranes. Pretreatment of KB cells with dibutyryl cyclic AMP, but not with dibutyryl cyclic GMP, also inhibited the formation of ruffling membranes. Addition of insulin enhanced Na+-dependent uptake of a system A amino acid (alpha-amino isobutyric acid; AIB) by the cells within 5 min after the addition, and decreased the cyclic AMP content of the cells. Treatments that inhibited insulin-induced formation of ruffling membranes of KB cells also inhibited insulin-induced enhancement of their AIB uptake. From these observations, the mechanism of insulin-induced formation of ruffling membranes and its close correlation with AIB transport are discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booyse F. M., Osikowicz G., Quarfoot A. J. Effects of chronic oral consumption of nicotine on the rabbit aortic endothelium. Am J Pathol. 1981 Feb;102(2):229–238. [PMC free article] [PubMed] [Google Scholar]
  2. Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collins V. P., Arro E., Blomquist E., Brunk U., Fredriksson B. A., Westermark B. Cell motility and proliferation in relation to available substratum area, serum concentration and culture age. Scan Electron Microsc. 1979;(3):411–420. [PubMed] [Google Scholar]
  4. Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
  5. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5608–5612. doi: 10.1073/pnas.78.9.5608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dipasquale A. Locomotory activity of epithelial cells in culture. Exp Cell Res. 1975 Aug;94(1):191–215. doi: 10.1016/0014-4827(75)90545-5. [DOI] [PubMed] [Google Scholar]
  7. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  8. Elsas L. J., 2nd, MacDonell R. C., Jr, Rosenberg L. E. Influence of age on insulin stimulation of amino acid uptake in rat diaphragm. J Biol Chem. 1971 Nov;246(21):6452–6459. [PubMed] [Google Scholar]
  9. Elsas L. J., Wheeler F. B., Danner D. J., DeHaan R. L. Amino acid transport by aggregates of cultured chicken heart cells. Effect of insulin. J Biol Chem. 1975 Dec 25;250(24):9381–9390. [PubMed] [Google Scholar]
  10. Fehlmann M., Le Cam A., Freychet P. Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. Synthesis of a high affinity component of transport. J Biol Chem. 1979 Oct 25;254(20):10431–10437. [PubMed] [Google Scholar]
  11. Goldman R. D., Lazarides E., Pollack R., Weber K. The distribution of actin in non-muscle cells. The use of actin antibody in the localization of actin within the microfilament bundles of mouse 3T3 cells. Exp Cell Res. 1975 Feb;90(2):333–344. doi: 10.1016/0014-4827(75)90323-7. [DOI] [PubMed] [Google Scholar]
  12. Goldman R. D., Milsted A., Schloss J. A., Starger J., Yerna M. J. Cytoplasmic fibers in mammalian cells: cytoskeletal and contractile elements. Annu Rev Physiol. 1979;41:703–722. doi: 10.1146/annurev.ph.41.030179.003415. [DOI] [PubMed] [Google Scholar]
  13. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  14. Goshima K., Owaribe K., Yamanaka H., Yoshino S. Requirement of calcium ions for cell degeneration with a toxin (vibriolysin) from Vibrio parahaemolyticus. Infect Immun. 1978 Dec;22(3):821–832. doi: 10.1128/iai.22.3.821-832.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gotlieb A. I., Heggeness M. H., Ash J. F., Singer S. J. Mechanochemical proteins, cell motility and cell-cell contacts: the localization of mechanochemical proteins inside cultured cells at the edge of an in vitro "wound". J Cell Physiol. 1979 Sep;100(3):563–578. doi: 10.1002/jcp.1041000318. [DOI] [PubMed] [Google Scholar]
  16. Guidotti G. G., Borghetti A. F., Gazzola G. C. The regulation of amino acid transport in animal cells. Biochim Biophys Acta. 1978 Dec 15;515(4):329–366. doi: 10.1016/0304-4157(78)90009-6. [DOI] [PubMed] [Google Scholar]
  17. Guidotti G. G., Franchi-Gazzola R., Gazzola G. C., Ronchi P. Regulation of amino acid transport in chick embryo heart cells. IV. Site and mechanisms of insulin action. Biochim Biophys Acta. 1974 Jul 31;356(2):219–230. doi: 10.1016/0005-2736(74)90285-5. [DOI] [PubMed] [Google Scholar]
  18. Harris A., Dunn G. Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp Cell Res. 1972 Aug;73(2):519–523. doi: 10.1016/0014-4827(72)90084-5. [DOI] [PubMed] [Google Scholar]
  19. Heggeness M. H., Wang K., Singer S. J. Intracellular distributions of mechanochemical proteins in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3883–3887. doi: 10.1073/pnas.74.9.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herman I. M., Crisona N. J., Pollard T. D. Relation between cell activity and the distribution of cytoplasmic actin and myosin. J Cell Biol. 1981 Jul;90(1):84–91. doi: 10.1083/jcb.90.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ingram V. M. A side view of moving fibroblasts. Nature. 1969 May 17;222(5194):641–644. doi: 10.1038/222641a0. [DOI] [PubMed] [Google Scholar]
  22. Karnieli E., Zarnowski M. J., Hissin P. J., Simpson I. A., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. Time course, reversal, insulin concentration dependency, and relationship to glucose transport activity. J Biol Chem. 1981 May 25;256(10):4772–4777. [PubMed] [Google Scholar]
  23. Kerrick W. G., Hoar P. E. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature. 1981 Jul 16;292(5820):253–255. doi: 10.1038/292253a0. [DOI] [PubMed] [Google Scholar]
  24. Kilberg M. S. Amino acid transport in isolated rat hepatocytes. J Membr Biol. 1982;69(1):1–12. doi: 10.1007/BF01871236. [DOI] [PubMed] [Google Scholar]
  25. Koga H. [Functional significance of microtubules and microfilaments for cellular motility in cultured brain tumors (author's transl)]. Neurol Med Chir (Tokyo) 1981 Oct;21(10):1009–1015. doi: 10.2176/nmc.21.1009. [DOI] [PubMed] [Google Scholar]
  26. Kono T., Robinson F. W., Blevins T. L., Ezaki O. Evidence that translocation of the glucose transport activity is the major mechanism of insulin action on glucose transport in fat cells. J Biol Chem. 1982 Sep 25;257(18):10942–10947. [PubMed] [Google Scholar]
  27. Kuchler R. J., Marlowe-Kuchler M. The transport and accumulation of alpha-aminoisobutyric acid into l-strain mouse fibroblasts. Biochim Biophys Acta. 1965 May 25;102(1):226–234. doi: 10.1016/0926-6585(65)90215-3. [DOI] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. LeCam A., Maxfield F., Willingham M., Pastan I. Insulin stimulation of amino acid transport in isolated rat hepatocytes is independent of hormone internalization. Biochem Biophys Res Commun. 1979 Jun 13;88(3):873–881. doi: 10.1016/0006-291x(79)91490-6. [DOI] [PubMed] [Google Scholar]
  31. Lembach K., Charalampous F. C. Metabolic functions of myo-inositol. VI. Impairment of amino acid transport in KB cells caused by inositol deficiency. J Biol Chem. 1967 Jun 10;242(11):2606–2614. [PubMed] [Google Scholar]
  32. Leven R. M., Nachmias V. T. Cultured megakaryocytes: changes in the cytoskeleton after ADP-induced spreading. J Cell Biol. 1982 Feb;92(2):313–323. doi: 10.1083/jcb.92.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mak W. W., Pitot H. C. Microfilament accumulation and the transport of amino acids and glucose in adult rat hepatocytes cultured on collagen gel/nylon mesh. Biochem Biophys Res Commun. 1981 Jan 15;98(1):203–210. doi: 10.1016/0006-291x(81)91889-1. [DOI] [PubMed] [Google Scholar]
  34. Mizel S. B., Wilson L. Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B. J Biol Chem. 1972 Jun 25;247(12):4102–4105. [PubMed] [Google Scholar]
  35. Morland B., Kaplan G. Macrophage activation in vivo and in vitro. Exp Cell Res. 1977 Sep;108(2):279–288. doi: 10.1016/s0014-4827(77)80035-9. [DOI] [PubMed] [Google Scholar]
  36. NOALL M. W., RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Endocrine control of amino acid transfer; distribution of an unmetabolizable amino acid. Science. 1957 Nov 15;126(3281):1002–1005. doi: 10.1126/science.126.3281.1002. [DOI] [PubMed] [Google Scholar]
  37. Osborn M., Weber K. Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane. Proc Natl Acad Sci U S A. 1976 Mar;73(3):867–871. doi: 10.1073/pnas.73.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Owaribe K., Hatano S. Inducation of antibody against actin from myxomycete plasmodium and its properties. Biochemistry. 1975 Jul;14(13):3024–3029. doi: 10.1021/bi00684a035. [DOI] [PubMed] [Google Scholar]
  39. Phang J. M., Valle D. L., Fisher L., Granger A. Puromycin effect on amino acid transport: differential rates of carrier protein turnover. Am J Physiol. 1975 Jan;228(1):23–26. doi: 10.1152/ajplegacy.1975.228.1.23. [DOI] [PubMed] [Google Scholar]
  40. Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Prentki M., Crettaz M., Jeanrenaud B. Role of microtubules in insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. J Biol Chem. 1981 May 10;256(9):4336–4340. [PubMed] [Google Scholar]
  42. Raizada M. K., Fellows R. E., Wu B. Cytochalasin B-induced alterations of insulin binding and microfilament organization in cultured fibroblasts. Exp Cell Res. 1981 Dec;136(2):335–341. doi: 10.1016/0014-4827(81)90012-4. [DOI] [PubMed] [Google Scholar]
  43. Risser W. L., Gelehrter T. D. Hormonal modulation of amino acid transport in rat hepatoma cells in tissue culture. J Biol Chem. 1973 Feb 25;248(4):1248–1254. [PubMed] [Google Scholar]
  44. Saint-Guillain M. L., Vray B., Hoebeke J., Leloup R. SEM morphological studies of phagocytosis by rat macrophages and rabbit polymorphonuclear leukocytes. Scan Electron Microsc. 1980;(Pt 2):205–212. [PubMed] [Google Scholar]
  45. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  47. Steiner A. L. Assay of cyclic nucleotides by radioimmunoassay methods. Methods Enzymol. 1974;38:96–105. doi: 10.1016/0076-6879(74)38016-0. [DOI] [PubMed] [Google Scholar]
  48. Stephens R. E. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
  49. Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Taylor R. G., Lewis J. C. Plasma protein modification of thrombocyte adhesion to glass. Scan Electron Microsc. 1979;(3):775–782. [PubMed] [Google Scholar]
  51. Van Obberghen E., De Meyts P., Roth J. Cell surface receptors for insulin and human growth hormone. Effect of microtubule and microfilament modifiers. J Biol Chem. 1976 Nov 10;251(21):6844–6851. [PubMed] [Google Scholar]
  52. Walker P. R., Whitfield J. F. Inhibition by colchicine of changes in amino acid transport and initiation of DNA synthesis in regenerating rat liver. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1394–1398. doi: 10.1073/pnas.75.3.1394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Weber K., Pollack R., Bibring T. Antibody against tuberlin: the specific visualization of cytoplasmic microtubules in tissue culture cells. Proc Natl Acad Sci U S A. 1975 Feb;72(2):459–463. doi: 10.1073/pnas.72.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Whyte M. P., Murphy W. A., Fallon M. D., Sly W. S., Teitelbaum S. L., McAlister W. H., Avioli L. V. Osteopetrosis, renal tubular acidosis and basal ganglia calcification in three sisters. Am J Med. 1980 Jul;69(1):64–74. doi: 10.1016/0002-9343(80)90501-x. [DOI] [PubMed] [Google Scholar]
  56. Yahara I., Iwashita S., Ebina T., Satake M., Ishida N. Inhibition of ligand-independent cap formation of mouse lymphocytes and Raji cells by neocarzinostatin. Cancer Res. 1979 Nov;39(11):4687–4693. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES