Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Mar 1;98(3):885–893. doi: 10.1083/jcb.98.3.885

pH homeostasis in human lymphocytes: modulation by ions and mitogen

PMCID: PMC2113162  PMID: 6699091

Abstract

Quiescent human peripheral blood lymphocytes have been shown to maintain a relatively constant intracellular pH of 7.0-7.2 over an extracellular pH range of 6.9-7.4. Two methods of measuring intracellular pH were used in these studies, 19F nuclear magnetic resonance and [14C]5,5-dimethyloxazolidine-2,4-dione (DMO) equilibrium distributions. When ATP levels were decreased in these cells, actively maintained pH regulation was abolished and cells exhibited a constant pH gradient of 0.2 pH unit (acid inside relative to outside). Possible mechanisms for pH regulation are discussed. The effects of the Na+ and K+ composition of the medium on pH regulation showed no correlation with their effects on mitogen-induced proliferative response, which we have previously determined (Deutsch, C., and M. Price, 1982, J. Cell. Physiol., 111:73-79). In low-Na+ mannitol medium, pH regulation was similar to that observed for lymphocytes in normal medium, whereas mitogen-induced proliferation was severely inhibited in low-Na+ mannitol. In contrast, high-K+, low Na+ medium caused loss of pH homeostasis, whereas it restored the proliferative response. Loss of pH homeostasis was also observed on prolonged exposure of lymphocytes to mitogen (greater than 6 h in culture). However, mitogen stimulation led to little or no change in intracellular pH in the first few hours of cell culture. Therefore, a shift in intracellular pH is not a necessary or general event in mitogen-stimulated proliferation of lymphocytes.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang H., Saccomani G., Rabon E., Schackmann R., Sachs G. Proton transport by gastric membrane vesicles. Biochim Biophys Acta. 1977 Jan 21;464(2):313–327. doi: 10.1016/0005-2736(77)90006-2. [DOI] [PubMed] [Google Scholar]
  2. Deamer D. W. Proton permeability in biological and model membranes. Kroc Found Ser. 1981;15:173–187. [PubMed] [Google Scholar]
  3. Deutsch C., Price M. A. Cell calcium in human peripheral blood lymphocytes and the effect of mitogen. Biochim Biophys Acta. 1982 May 7;687(2):211–218. doi: 10.1016/0005-2736(82)90548-x. [DOI] [PubMed] [Google Scholar]
  4. Deutsch C., Price M. A., Johansson C. A sodium requirement for mitogen-induced proliferation in human peripheral blood lymphocytes. Exp Cell Res. 1981 Dec;136(2):359–369. doi: 10.1016/0014-4827(81)90015-x. [DOI] [PubMed] [Google Scholar]
  5. Deutsch C., Price M. Role of extracellular Na and K in lymphocyte activation. J Cell Physiol. 1982 Oct;113(1):73–79. doi: 10.1002/jcp.1041130113. [DOI] [PubMed] [Google Scholar]
  6. Deutsch C., Slater L., Goldstein P. Volume regulation of human peripheral blood lymphocytes and stimulated proliferation of volume-adapted cells. Biochim Biophys Acta. 1982 Nov 17;721(3):262–267. doi: 10.1016/0167-4889(82)90078-7. [DOI] [PubMed] [Google Scholar]
  7. Deutsch C., Taylor J. S., Wilson D. F. Regulation of intracellular pH by human peripheral blood lymphocytes as measured by 19F NMR. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7944–7948. doi: 10.1073/pnas.79.24.7944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Felber S. M., Brand M. D. Concanavalin A causes an increase in sodium permeability and intracellular sodium content of pig lymphocytes. Biochem J. 1983 Mar 15;210(3):893–897. doi: 10.1042/bj2100893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Felber S. M., Brand M. D. Early plasma-membrane-potential changes during stimulation of lymphocytes by concanavalin A. Biochem J. 1983 Mar 15;210(3):885–891. doi: 10.1042/bj2100885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerson D. F., Kiefer H., Eufe W. Intracellular pH of mitogen-stimulated lymphocytes. Science. 1982 May 28;216(4549):1009–1010. doi: 10.1126/science.6281887. [DOI] [PubMed] [Google Scholar]
  11. Gerson D. F., Kiefer H. High intracellular pH accompanies mitotic activity in murine lymphocytes. J Cell Physiol. 1982 Jul;112(1):1–4. doi: 10.1002/jcp.1041120102. [DOI] [PubMed] [Google Scholar]
  12. Gillies R. J., Deamer D. W. Intracellular pH changes during the cell cycle in Tetrahymena. J Cell Physiol. 1979 Jul;100(1):23–31. doi: 10.1002/jcp.1041000103. [DOI] [PubMed] [Google Scholar]
  13. Gillies R. J., Ogino T., Shulman R. G., Ward D. C. 31P nuclear magnetic resonance evidence for the regulation of intracellular pH by Ehrlich ascites tumor cells. J Cell Biol. 1982 Oct;95(1):24–28. doi: 10.1083/jcb.95.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gonzalez-Mendez R., Wemmer D., Hahn G., Wade-Jardetzky N., Jardetzky O. Continuous-flow NMR culture system for mammalian cells. Biochim Biophys Acta. 1982 Jun 8;720(3):274–280. doi: 10.1016/0167-4889(82)90051-9. [DOI] [PubMed] [Google Scholar]
  15. Heinz A., Sachs G., Schafer J. A. Evidence for activation of an active electrogenic proton pump in Ehrlich ascites tumor cells during glycolysis. J Membr Biol. 1981;61(3):143–153. doi: 10.1007/BF01870520. [DOI] [PubMed] [Google Scholar]
  16. Holian A., Deutsch C. J., Holian S. K., Daniele R. P., Wilson D. F. Lymphocyte response to phytohemagglutinin: intracellular volume and intracellular [K+]. J Cell Physiol. 1979 Jan;98(1):137–144. doi: 10.1002/jcp.1040980115. [DOI] [PubMed] [Google Scholar]
  17. Kiefer H., Blume A. J., Kaback H. R. Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2200–2204. doi: 10.1073/pnas.77.4.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee J., Simpson G., Scholes P. An ATPase from dog gastric mucosa: changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis. Biochem Biophys Res Commun. 1974 Sep 23;60(2):825–832. doi: 10.1016/0006-291x(74)90315-5. [DOI] [PubMed] [Google Scholar]
  19. Levin G. E., Collinson P., Baron D. N. The intracellular pH of human leucocytes in response to acid-base changes in vitro. Clin Sci Mol Med. 1976 Apr;50(4):293–299. doi: 10.1042/cs0500293. [DOI] [PubMed] [Google Scholar]
  20. Negendank W., Shaller C. The effect of metabolic inhibition on ion contents and sodium exchange in human lymphocytes. J Cell Physiol. 1982 Mar;110(3):291–299. doi: 10.1002/jcp.1041100312. [DOI] [PubMed] [Google Scholar]
  21. Rink T. J., Montecucco C., Hesketh T. R., Tsien R. Y. Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta. 1980;595(1):15–30. doi: 10.1016/0005-2736(80)90243-6. [DOI] [PubMed] [Google Scholar]
  22. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  24. Sachs G., Chang H. H., Rabon E., Schackman R., Lewin M., Saccomani G. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem. 1976 Dec 10;251(23):7690–7698. [PubMed] [Google Scholar]
  25. Schackmann R., Schwartz A., Saccomani G., Sachs G. Cation transport by gastric H+:K+ ATPase. J Membr Biol. 1977 Apr 22;32(3-4):361–381. doi: 10.1007/BF01905228. [DOI] [PubMed] [Google Scholar]
  26. Segel G. B., Simon W., Lichtman M. A. Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes. J Clin Invest. 1979 Sep;64(3):834–841. doi: 10.1172/JCI109531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shapiro H. M., Natale P. J., Kamentsky L. A. Estimation of membrane potentials of individual lymphocytes by flow cytometry. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5728–5730. doi: 10.1073/pnas.76.11.5728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Slonczewski J. L., Rosen B. P., Alger J. R., Macnab R. M. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6271–6275. doi: 10.1073/pnas.78.10.6271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor J. S., Deutsch C. Fluorinated alpha-methylamino acids as 19F NMR indicators of intracellular pH. Biophys J. 1983 Sep;43(3):261–267. doi: 10.1016/S0006-3495(83)84349-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsien R. Y., Pozzan T., Rink T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982 Jan 7;295(5844):68–71. doi: 10.1038/295068a0. [DOI] [PubMed] [Google Scholar]
  31. Zieve P. D., Haghshenass M., Krevans J. R. Intracellular pH of the human lymphocyte. Am J Physiol. 1967 May;212(5):1099–1102. doi: 10.1152/ajplegacy.1967.212.5.1099. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES