Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1825–1835. doi: 10.1083/jcb.98.5.1825

Endogenous glycosyltransferases glucosylate lipids in flagella of Euglena

PMCID: PMC2113173  PMID: 6233289

Abstract

Flagella, intact deflagellated cells and isolated cell surfaces of the unicell , Euglena were separately assayed for glycosyltransferase activity by incubating these fractions with uridine diphosphate- [3H]glucose and isolating radiolabeled products. Most of the label was incorporated into lipophilic products, soluble in chloroform/methanol, which could be separated via thin layer chromatography or LH-60 chromatography into four distinct classes. The most polar of these products was extracted from flagella and purified by column chromatography for use as an in vitro substrate to identify flagella- associated glycosyltransferases. After flagella were treated with the detergent CHAPS , a soluble fraction was removed that was capable of glycosylation in solution. The glycosyltransferase(s) responsible for this activity were further enriched on sucrose or fructose gradients and ultimately identified on acrylamide gels through the combined use of nondenaturing gels, dial-[3H]uridine diphosphate binding, and fluorography. The enzyme had an apparent monomer molecular weight of 32,000 and consisted of four or fewer subunits. The occurrence of endogenous glycosyltransferase(s) in flagella suggests that modifications and/or assembly of the flagella surface can take place in situ in this organism.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker R., Olsen K. W., Shaper J. H., Hill R. L. Agarose derivatives of uridine diphosphate and N-acetylglucosamine for the purification of a galactosyltransferase. J Biol Chem. 1972 Nov 25;247(22):7135–7147. [PubMed] [Google Scholar]
  2. Behrens N. H., Tábora E. Dolichol intermediates in the glycosylation of proteins. Methods Enzymol. 1978;50:402–435. doi: 10.1016/0076-6879(78)50047-5. [DOI] [PubMed] [Google Scholar]
  3. Beyer T. A., Sadler J. E., Hill R. L. Purification to homogeneity of H blood group beta-galactoside alpha 1 leads to 2 fucosyltransferase from porcine submaxillary gland. J Biol Chem. 1980 Jun 10;255(11):5364–5372. [PubMed] [Google Scholar]
  4. Beyer T. A., Sadler J. E., Rearick J. I., Paulson J. C., Hill R. L. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol Relat Areas Mol Biol. 1981;52:23–175. doi: 10.1002/9780470122976.ch2. [DOI] [PubMed] [Google Scholar]
  5. Bloodgood R. A. Dynamic properties of the flagellar surface. Symp Soc Exp Biol. 1982;35:353–380. [PubMed] [Google Scholar]
  6. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  7. Bouck G. B., Rogalski A., Valaitis A. Surface organization and composition of Euglena. II. Flagellar mastigonemes. J Cell Biol. 1978 Jun;77(3):805–826. doi: 10.1083/jcb.77.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlson D. M., McGuire E. J., Jourdian G. W., Roseman S. The sialic acids. XVI. Isolation of a mucin sialyltransferase from sheep submaxillary gland. J Biol Chem. 1973 Aug 25;248(16):5763–5773. [PubMed] [Google Scholar]
  9. Colombino L. F., Bosmann H. B., McLean R. J. Cell surface localization of the sialyltransferase ectoenzyme system during the Chlamydomonas mating reaction. Exp Cell Res. 1978 Mar 1;112(1):25–30. doi: 10.1016/0014-4827(78)90521-9. [DOI] [PubMed] [Google Scholar]
  10. Elbein A. D., Forsee W. T. Biosynthesis and structure of glycosyl diglycerides, steryl glucosides, and acylated steryl glucosides. Lipids. 1975 Jul;10(7):427–436. doi: 10.1007/BF02532449. [DOI] [PubMed] [Google Scholar]
  11. Esders T. W., Light R. J. Occurrence of a uridine diphosphate glucose: sterol glucosyltransferase in Candida bogoriensis. J Biol Chem. 1972 Dec 10;247(23):7494–7497. [PubMed] [Google Scholar]
  12. Fleischer B., Smigel M. Solubilization and properties of galactosyltransferase and sulfotransferase activities of Golgi membranes in Triton X-100. J Biol Chem. 1978 Mar 10;253(5):1632–1638. [PubMed] [Google Scholar]
  13. Geetha-Habib M., Bouck G. B. Synthesis and mobilization of flagellar glycoproteins during regeneration in Euglena. J Cell Biol. 1982 May;93(2):432–441. doi: 10.1083/jcb.93.2.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ghebregzabher M., Rufini S., Monaldi B., Lato M. Thin-layer chromatography of carbohydrates. J Chromatogr. 1976 Aug 18;127(2):133–162. doi: 10.1016/s0021-9673(00)80168-5. [DOI] [PubMed] [Google Scholar]
  15. Hofmann C., Bouck G. B. Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules. J Cell Biol. 1976 Jun;69(3):693–715. doi: 10.1083/jcb.69.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  17. Kaufman B., Basu S., Roseman S. Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem. 1968 Nov 10;243(21):5804–5807. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lane L. C. A simple method for stabilizing protein-sulfhydryl groups during SDS-gel electrophoresis. Anal Biochem. 1978 Jun 1;86(2):655–664. doi: 10.1016/0003-2697(78)90792-3. [DOI] [PubMed] [Google Scholar]
  20. Lange Y., Cutler H. B., Steck T. L. The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane. J Biol Chem. 1980 Oct 10;255(19):9331–9337. [PubMed] [Google Scholar]
  21. Laskey R. A., Mills A. D. Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Lett. 1977 Oct 15;82(2):314–316. doi: 10.1016/0014-5793(77)80609-1. [DOI] [PubMed] [Google Scholar]
  22. Liu C. K., Schmied R., Waxman S. 12-O-tetradecanoyl-phorbol-13-acetate release of glycosyltransferases from human blood cells. J Clin Invest. 1980 Jun;65(6):1365–1371. doi: 10.1172/JCI109800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLean R. J., Bosmann H. B. Cell-cell interactions: enhancement of glycosyl transferase ectoenzyme systems during Chlamydomonas gametic contact. Proc Natl Acad Sci U S A. 1975 Jan;72(1):310–313. doi: 10.1073/pnas.72.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nes W. R., Joseph J. M., Landrey J. R., Conner R. L. The effects of branching, oxygen, and chain length in the side chain of sterols on their metabolism by Tetrahymena pyriformis. J Biol Chem. 1980 Dec 25;255(24):11815–11821. [PubMed] [Google Scholar]
  25. Ogura A., Takahashi K. Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature. 1976 Nov 11;264(5582):170–172. doi: 10.1038/264170a0. [DOI] [PubMed] [Google Scholar]
  26. Paulson J. C., Beranek W. E., Hill R. L. Purification of a sialyltransferase from bovine colostrum by affinity chromatography on CDP-agarose. J Biol Chem. 1977 Apr 10;252(7):2356–2362. [PubMed] [Google Scholar]
  27. Paulson J. C., Prieels J. P., Glasgow L. R., Hill R. L. Sialyl- and fucosyltransferases in the biosynthesis of asparaginyl-linked oligosaccharides in glycoproteins. Mutually exclusive glycosylation by beta-galactoside alpha2 goes to 6 sialyltransferase and N-acetylglucosaminide alpha1 goes to 3 fucosyltransferase. J Biol Chem. 1978 Aug 25;253(16):5617–5624. [PubMed] [Google Scholar]
  28. Pierce M., Cummings R. D., Roth S. The localization of galactosyltransferases in polyacrylamide gels by a coupled enzyme assay. Anal Biochem. 1980 Mar 1;102(2):441–449. doi: 10.1016/0003-2697(80)90180-3. [DOI] [PubMed] [Google Scholar]
  29. Pierce M., Turley E. A., Roth S. Cell surface glycosyltransferase activities. Int Rev Cytol. 1980;65:1–47. doi: 10.1016/s0074-7696(08)61958-0. [DOI] [PubMed] [Google Scholar]
  30. Pohl P., Glasl H., Wagner H. Zur Analytik pflanzlicher Glyko- und Phospholipoide und ihrer Fettsäuren. I. Eine neue dünnschichtchromatographische Methode zur Trennung pflanzlicher Lipoide und quantitativen Bestimmung ihrer Fettsäure-Zusammensetzung. J Chromatogr. 1970 Jun 24;49(3):488–492. doi: 10.1016/s0021-9673(00)93664-1. [DOI] [PubMed] [Google Scholar]
  31. Powell J. T., Brew K. Affinity labeling of bovine colostrum galactosyltransferase with a uridine 5'-diphosphate derivative. Biochemistry. 1976 Aug 10;15(16):3499–3505. doi: 10.1021/bi00661a016. [DOI] [PubMed] [Google Scholar]
  32. Prohaska R., Schenkel-Brunner H., Tuppy H. Enzymatic synthesis of blood-group Lewis-specific glycolipids. Eur J Biochem. 1978 Mar;84(1):161–166. doi: 10.1111/j.1432-1033.1978.tb12152.x. [DOI] [PubMed] [Google Scholar]
  33. Rogalski A. A., Bouck G. B. Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena. J Cell Biol. 1980 Aug;86(2):424–435. doi: 10.1083/jcb.86.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rogalski A. A., Bouck G. B. Flagellar surface antigens in Euglena: immunological evidence for an external glycoprotein pool and its transfer to the regenerating flagellum. J Cell Biol. 1982 Jun;93(3):758–766. doi: 10.1083/jcb.93.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sadler J. E., Beyer T. A., Hill R. L. Affinity chromatography of glycosyltransferases. J Chromatogr. 1981 Oct 23;215:181–194. doi: 10.1016/s0021-9673(00)81398-9. [DOI] [PubMed] [Google Scholar]
  36. Schwartz N. B., Dorfman A. Purification of rat chondrosarcoma xylosyltransferase. Arch Biochem Biophys. 1975 Nov;171(1):136–144. doi: 10.1016/0003-9861(75)90016-8. [DOI] [PubMed] [Google Scholar]
  37. Schwyzer M., Hill R. L. Porcine A blood group-specific N-acetylgalactosaminyltransferase. I. Purification from porcine submaxillary glands. J Biol Chem. 1977 Apr 10;252(7):2338–2345. [PubMed] [Google Scholar]
  38. Shur B. D., Hall N. G. A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. J Cell Biol. 1982 Nov;95(2 Pt 1):574–579. doi: 10.1083/jcb.95.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Simonds W. F., Koski G., Streaty R. A., Hjelmeland L. M., Klee W. A. Solubilization of active opiate receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4623–4627. doi: 10.1073/pnas.77.8.4623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith C. A., Brew K. Isolation and characteristics of galactosyltransferase from Golgi membranes of lactating sheep mammary glands. J Biol Chem. 1977 Oct 25;252(20):7294–7299. [PubMed] [Google Scholar]
  41. Spencer J. P., Elbein A. D. Transfer of mannose from GDP-mannose to lipid-linked oligosaccharide by soluble mannosyl transferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2524–2527. doi: 10.1073/pnas.77.5.2524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  43. Yu R. K., Lee S. H. In vitro biosynthesis of sialosylgalactosylceramide (G7) by mouse brain microsomes. J Biol Chem. 1976 Jan 10;251(1):198–203. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES