Abstract
The permeability of junctional complexes to ultrastructural tracers of different molecular weight and the freeze-fracture appearance of junctional structure were investigated in the resting and stimulated rat parotid gland. Tracers were administered retrogradely via the main excretory duct, and allowed to flow by gravity (16 mmHg) into the gland for 15-60 min. Secretion was induced in some animals by intraperitoneal injection of isoproterenol. In resting glands, the tracers microperoxidase , cytochrome c, myoglobin, tyrosinase (subunits), and hemoglobin were restricted to the luminal space of the acini and ducts. In glands stimulated 1-4 h before tracer administration, reaction product for microperoxidase , cytochrome c, myoglobin, and tyrosinase was found in the intercellular and interstitial spaces, whereas hemoglobin was usually retained in the lumina. In contrast, horseradish peroxidase and lactoperoxidase appeared to penetrate the tight junctions and reaction product was localized in the extracellular spaces in both resting and stimulated glands. Diffuse cytoplasmic staining for horseradish peroxidase and lactoperoxidase was frequently observed in acinar and duct cells. The distribution of horseradish peroxidase was similar in both Sprague-Dawley and Wistar-Furth rats, and at concentrations of 0.1-10 mg/ml in the tracer solution. Freeze- fracture replicas of stimulated acinar cells revealed an increased irregularity of the tight junction meshwork, but no obvious gaps or discontinuities were observed. These findings indicate that (a) tight junctions in the resting rat parotid gland are impermeable to tracers of molecular weight greater than or equal to 1,900; (b) stimulation with isoproterenol results in a transient increase in junctional permeability allowing passage of tracers of molecular weight less than or equal to 34,500; (c) junctional permeability cannot be directly correlated with junctional structure; and (d) the behavior of horseradish peroxidase and lactoperoxidase in the rat parotid gland is inconsistent with their molecular weights. Cell membrane damage due to the enzymatic activity or binding of these two tracers may account for the observed distribution.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amsterdam A., Ohad I., Schramm M. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J Cell Biol. 1969 Jun;41(3):753–773. doi: 10.1083/jcb.41.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson W. A. The use of exogenous myoglobin as an ultrastructural tracer. Reabsorption and translocation of protein by the renal tubule. J Histochem Cytochem. 1972 Sep;20(9):672–684. doi: 10.1177/20.9.672. [DOI] [PubMed] [Google Scholar]
- Augustus J., Bijman J., van Os C. H. Electrical resistance of rabbit submaxillary main duct: a tight epithelium with leaky cell membranes. J Membr Biol. 1978 Oct 19;43(2-3):203–226. doi: 10.1007/BF01933479. [DOI] [PubMed] [Google Scholar]
- Bentzel C. J., Hainau B., Ho S., Hui S. W., Edelman A., Anagnostopoulos T., Benedetti E. L. Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins. Am J Physiol. 1980 Sep;239(3):C75–C89. doi: 10.1152/ajpcell.1980.239.3.C75. [DOI] [PubMed] [Google Scholar]
- Butcher F. R., Putney J. W., Jr Regulation of parotid gland function by cyclic nucleotides and calcium. Adv Cyclic Nucleotide Res. 1980;13:215–249. [PubMed] [Google Scholar]
- Cereijido M., Stefani E., Palomo A. M. Occluding junctions in a cultured transporting epithelium: structural and functional heterogeneity. J Membr Biol. 1980 Mar 31;53(1):19–32. doi: 10.1007/BF01871169. [DOI] [PubMed] [Google Scholar]
- Chu-Wang I. W., Oppenheim R. W. Uptake, intra-axonal transport and fate of horseradish peroxidase in embryonic spinal neurons of the chick. J Comp Neurol. 1980 Oct 1;193(3):753–776. doi: 10.1002/cne.901930312. [DOI] [PubMed] [Google Scholar]
- Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clementi F. Effect of horseradish peroxidase on mice lung capillaries' permeability. J Histochem Cytochem. 1970 Dec;18(12):887–892. doi: 10.1177/18.12.887. [DOI] [PubMed] [Google Scholar]
- Cornell R., Walker W. A., Isselbacher K. J. Small intestinal absorption of horseradish peroxidase. A cytochemical study. Lab Invest. 1971 Jul;25(1):42–48. [PubMed] [Google Scholar]
- Cotran K. S., Karnovsky M. J. Vascular leakage induced by horseradish peroxidase in the rat. Proc Soc Exp Biol Med. 1967 Nov;126(2):557–561. doi: 10.3181/00379727-126-32504. [DOI] [PubMed] [Google Scholar]
- De Camilli P., Peluchetti D., Meldolesi J. Dynamic changes of the luminal plasmalemma in stimulated parotid acinar cells. A freeze-fracture study. J Cell Biol. 1976 Jul;70(1):59–74. doi: 10.1083/jcb.70.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffey M. E., Hainau B., Ho S., Bentzel C. J. Regulation of epithelial tight junction permeability by cyclic AMP. Nature. 1981 Dec 3;294(5840):451–453. doi: 10.1038/294451a0. [DOI] [PubMed] [Google Scholar]
- Easter D. W., Wade J. B., Boyer J. L. Structural integrity of hepatocyte tight junctions. J Cell Biol. 1983 Mar;96(3):745–749. doi: 10.1083/jcb.96.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elias E., Hruban Z., Wade J. B., Boyer J. L. Phalloidin-induced cholestasis: a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2229–2233. doi: 10.1073/pnas.77.4.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friend D. S., Gilula N. B. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972 Jun;53(3):758–776. doi: 10.1083/jcb.53.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrett J. R., Klinger A. H., Parsons P. A. Permeability of canine submandibular glands to blood-borne horseradish peroxidase during parasympathetic secretion. Q J Exp Physiol. 1982 Jan;67(1):31–39. doi: 10.1113/expphysiol.1982.sp002622. [DOI] [PubMed] [Google Scholar]
- Garrett J. R., Klinger A. H., Parsons P. A. Permeability of submandibular salivary glands in dogs to blood-borne horseradish peroxidase (HRP). I. Perarterial bolus injection in "resting" glands. Cell Tissue Res. 1981;215(2):281–288. doi: 10.1007/BF00239115. [DOI] [PubMed] [Google Scholar]
- Garrett J. R., Parsons P. A. Movement of horseradish peroxidase in rabbit submandibular glands after ductal injection. Histochem J. 1976 Mar;8(2):177–189. doi: 10.1007/BF01007167. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- Hand A. R. Morphologic and cytochemical identification of peroxisomes in the rat parotid and other exocrine glands. J Histochem Cytochem. 1973 Feb;21(2):131–141. doi: 10.1177/21.2.131. [DOI] [PubMed] [Google Scholar]
- Jacobson H. R. Altered permeability in the proximal tubule response to cyclic AMP. Am J Physiol. 1979 Jan;236(1):F71–F79. doi: 10.1152/ajprenal.1979.236.1.F71. [DOI] [PubMed] [Google Scholar]
- Jansen J. W., de Pont J. J., Bonting S. L. Transepithelial permeability in the rabbit pancreas. Biochim Biophys Acta. 1979 Feb 20;551(1):95–108. doi: 10.1016/0005-2736(79)90356-0. [DOI] [PubMed] [Google Scholar]
- Junqueira L. C., Toledo A. M., Ferri R. G. Permeability of the stimulated rat submaxillary gland to its blood serum proteins. Arch Oral Biol. 1965 Nov-Dec;10(6):863–868. doi: 10.1016/0003-9969(65)90079-8. [DOI] [PubMed] [Google Scholar]
- Karnovsky M. J., Rice D. F. Exogenous cytochrome c as an ultrastructural tracer. J Histochem Cytochem. 1969 Nov;17(11):751–753. doi: 10.1177/17.11.751. [DOI] [PubMed] [Google Scholar]
- Koga A., Todo S. Morphological and functional changes in the tight junctions of the bile canaliculi induced by bile duct ligation. Cell Tissue Res. 1978 Dec 28;195(2):267–276. doi: 10.1007/BF00236724. [DOI] [PubMed] [Google Scholar]
- Martinez-Palomo A., Meza I., Beaty G., Cereijido M. Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol. 1980 Dec;87(3 Pt 1):736–745. doi: 10.1083/jcb.87.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martínez-Palomo A., Erlij D. Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4487–4491. doi: 10.1073/pnas.72.11.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meldolesi J., Castiglioni G., Parma R., Nassivera N., De Camilli P. Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs. J Cell Biol. 1978 Oct;79(1):156–172. doi: 10.1083/jcb.79.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metz J., Aoki A., Merlo M., Forssmann W. G. Morphological alterations and functional changes of interhepatocellular junctions induced by bile duct ligation. Cell Tissue Res. 1977 Aug 26;182(3):299–310. doi: 10.1007/BF00219766. [DOI] [PubMed] [Google Scholar]
- Metz J., Merlo M., Billich H., Forssmann W. G. Exocrine pancreas under experimental conditions. IV. Alterations of intercellular junctions between acinar cells following pancreatic duct ligation. Cell Tissue Res. 1978 Jan 17;186(2):227–240. doi: 10.1007/BF00225533. [DOI] [PubMed] [Google Scholar]
- Meza I., Ibarra G., Sabanero M., Martínez-Palomo A., Cereijido M. Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol. 1980 Dec;87(3 Pt 1):746–754. doi: 10.1083/jcb.87.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Møllgård K., Milinowska D. H., Saunders N. R. Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature. 1976 Nov 18;264(5583):293–294. doi: 10.1038/264293a0. [DOI] [PubMed] [Google Scholar]
- Oliver C., Essner E. Protein transport in mouse kidney utilizing tyrosinase as an ultrastructural tracer. J Exp Med. 1972 Aug 1;136(2):291–304. doi: 10.1084/jem.136.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver C., Hand A. R. Uptake and fate of luminally administered horseradish peroxidase in resting and isoproterenol-stimulated rat parotid acinar cells. J Cell Biol. 1978 Jan;76(1):207–229. doi: 10.1083/jcb.76.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARKS H. F. On the fine structure of the parotid gland of mouse and rat. Am J Anat. 1961 May;108:303–329. doi: 10.1002/aja.1001080306. [DOI] [PubMed] [Google Scholar]
- Parsons P. A., Garrett J. R. Movement of horseradish peroxidase in submandibular glands of dogs after ductal injection. Med Biol. 1977 Oct;55(5):249–260. [PubMed] [Google Scholar]
- Parsons P. A., Klinger A. H., Garrett J. R. Adrenergic influences on the permeability of rabbit submandibular salivary glands to blood-borne horseradish peroxidase. Histochem J. 1977 Jul;9(4):419–433. doi: 10.1007/BF01002974. [DOI] [PubMed] [Google Scholar]
- Qwarnström E. E., Hand A. R. A light and electron microscopic study of the distribution and effects of water-soluble radiographic contrast medium after retrograde infusion into the rat submandibular gland. Arch Oral Biol. 1982;27(2):117–127. doi: 10.1016/0003-9969(82)90131-5. [DOI] [PubMed] [Google Scholar]
- Ranga V., Kleinerman J. The effect of pilocarpine on vesicular uptake and transport of horseradish peroxidase by the guinea pig tracheal epithelium. Am Rev Respir Dis. 1982 May;125(5):579–585. doi: 10.1164/arrd.1982.125.5.579. [DOI] [PubMed] [Google Scholar]
- Raviola E., Goodenough D. A., Raviola G. Structure of rapidly frozen gap junctions. J Cell Biol. 1980 Oct;87(1):273–279. doi: 10.1083/jcb.87.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCOTT B. L., PEASE D. C. Electron microscopy of the salivary and lacrimal glands of the rat. Am J Anat. 1959 Jan;104:115–161. doi: 10.1002/aja.1001040106. [DOI] [PubMed] [Google Scholar]
- Schneyer L. H., Young J. A., Schneyer C. A. Salivary secretion of electrolytes. Physiol Rev. 1972 Jul;52(3):720–777. doi: 10.1152/physrev.1972.52.3.720. [DOI] [PubMed] [Google Scholar]
- Schramm M., Selinger Z. The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J Cyclic Nucleotide Res. 1975;1(4):181–192. [PubMed] [Google Scholar]
- Shimono M., Yamamura T., Fumagalli G. Intercellular junctions in salivary glands: freeze-fracture and tracer studies of normal rat sublingual gland. J Ultrastruct Res. 1980 Sep;72(3):286–299. doi: 10.1016/s0022-5320(80)90065-9. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simson J. A., Dom R. M. The use of lead as an ionic tracer for investigating routes of passive fluid transfer. J Histochem Cytochem. 1983 May;31(5):675–683. doi: 10.1177/31.5.6302164. [DOI] [PubMed] [Google Scholar]
- Simson J. V. Discharge and restitution of secretory material in the rat parotid gland in response to isoproterenol. Z Zellforsch Mikrosk Anat. 1969;101(2):175–191. doi: 10.1007/BF00335726. [DOI] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Tamarin A., Walker J. A longitudinal study of parotid secretory kinematics by cinemicrography and computer analysis. Pflugers Arch. 1976 Oct 15;366(1):101–106. doi: 10.1007/BF02486568. [DOI] [PubMed] [Google Scholar]
- Thulin A. Motor and secretory effects of nerves on the parotid gland of rat. Acta Physiol Scand. 1976 Apr;96(4):506–511. doi: 10.1111/j.1748-1716.1976.tb10221.x. [DOI] [PubMed] [Google Scholar]
- Yamamoto S., Yoshida Y., Kishi F., Kakudo Y. Cytochemical study of uptake of exogenous peroxidase by the rat submandibular salivary gland. Arch Oral Biol. 1977;22(1):65–69. doi: 10.1016/0003-9969(77)90142-x. [DOI] [PubMed] [Google Scholar]
- Yoshida Y., Yamamoto S., Kakudo Y. Transport of intravenously administered horseradish peroxidase into the rat submaxillary saliva. Arch Oral Biol. 1974 Sep;19(9):801–805. doi: 10.1016/0003-9969(74)90168-x. [DOI] [PubMed] [Google Scholar]
- van Deurs B., Luft J. H. Effects of glutaraldehyde fixation on the structure of tight junctions: a quantitative freeze-fracture analysis. J Ultrastruct Res. 1979 Aug;68(2):160–172. doi: 10.1016/s0022-5320(79)90151-5. [DOI] [PubMed] [Google Scholar]
