Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1851–1864. doi: 10.1083/jcb.98.5.1851

Structural organization of (Na+ + K+)-ATPase in purified membranes

PMCID: PMC2113179  PMID: 6327722

Abstract

The structural organization of crystalline, membrane-bound (Na+ + K+)- ATPase was studied by negative staining and thin sectioning. The enzyme molecules were induced to form crystalline arrays within fragments of membrane by incubation in defined ionic conditions. The enzyme remained fully active after crystallization. Negative staining and computer processing of images of the crystalline specimens identified two discrete crystalline arrays. The dimensions of the unit cell of one of the arrays were large enough to accommodate an alpha beta protomer; those of the other array, an (alpha beta)2 diprotomer . Thin sections of the crystalline fraction contained a unique membrane complex that was formed from two apposed plasma membranes. The paired membranes in this complex were separated by a center-to-center space of 15 nm containing evenly spaced septa that connected the membrane surfaces; the overall thickness of the entire structure was 22-25 nm. The agglutinin from Ricinus communis, a lectin that binds to the carbohydrate moiety of the beta-subunit of (Na+ + K+)-ATPase, decorated the free surfaces of the complex. Therefore, this complex of paired membranes is the result of interactions between the cytoplasmic domains of the enzyme. From measurements of the dimensions of these structures, we estimate the overall length of the enzyme to be approximately 11.5 nm along the axis perpendicular to the plane of the membrane, and the molecular protrudes more (approximately 5 nm) on the cytoplasmic surface than on the extracytoplasmic surface (approximately 2 nm).

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Amos L. A., Henderson R., Unwin P. N. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol. 1982;39(3):183–231. doi: 10.1016/0079-6107(83)90017-2. [DOI] [PubMed] [Google Scholar]
  3. Brotherus J. R., Møller J. V., Jørgensen P. L. Soluble and active renal Na, K-ATPase with maximum protein molecular mass 170,000 +/- 9,000 daltons; formation of larger units by secondary aggregation. Biochem Biophys Res Commun. 1981 May 15;100(1):146–154. doi: 10.1016/s0006-291x(81)80075-7. [DOI] [PubMed] [Google Scholar]
  4. Craig W. S. Determination of the distribution of sodium and potassium ion activated adenosinetriphosphatase among the various oligomers formed in solutions of nonionic detergents. Biochemistry. 1982 May 25;21(11):2667–2674. doi: 10.1021/bi00540a014. [DOI] [PubMed] [Google Scholar]
  5. Craig W. S., Kyte J. Stoichiometry and molecular weight of the minimum asymmetric unit of canine renal sodium and potassium ion-activated adenosine triphosphatase. J Biol Chem. 1980 Jul 10;255(13):6262–6269. [PubMed] [Google Scholar]
  6. Craig W. S. Monomer of sodium and potassium ion activated adenosinetriphosphatase displays complete enzymatic function. Biochemistry. 1982 Oct 26;21(22):5707–5717. doi: 10.1021/bi00265a049. [DOI] [PubMed] [Google Scholar]
  7. Deguchi N., Jorgensen P. L., Maunsbach A. B. Ultrastructure of the sodium pump. Comparison of thin sectioning, negative staining, and freeze-fracture of purified, membrane-bound (Na+,K+)-ATPase. J Cell Biol. 1977 Dec;75(3):619–634. doi: 10.1083/jcb.75.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dixon J. F., Hokin L. E. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. Purification and properties of the enzyme from the electric organ of Electrophorus electricus. Arch Biochem Biophys. 1974 Aug;163(2):749–758. doi: 10.1016/0003-9861(74)90537-2. [DOI] [PubMed] [Google Scholar]
  9. Erickson H. P., Voter W. A., Leonard K. Image reconstruction in electron microscopy: enhancement of periodic structure by optical filtering. Methods Enzymol. 1978;49:39–63. doi: 10.1016/s0076-6879(78)49006-8. [DOI] [PubMed] [Google Scholar]
  10. Esmann M., Christiansen C., Karlsson K. A., Hansson G. C., Skou J. C. Hydrodynamic properties of solubilized (Na+ + K+)-ATPase from rectal glands of Squalus acanthias. Biochim Biophys Acta. 1980 Dec 2;603(1):1–12. doi: 10.1016/0005-2736(80)90386-7. [DOI] [PubMed] [Google Scholar]
  11. Fuller S. D., Capaldi R. A., Henderson R. Structure of cytochrome c oxidase in deoxycholate-drived two-dimensional crystals. J Mol Biol. 1979 Oct 25;134(2):305–327. doi: 10.1016/0022-2836(79)90037-8. [DOI] [PubMed] [Google Scholar]
  12. Haase W., Koepsell H. Substructure of membrane-bound Na+-K+-ATPase protein. Pflugers Arch. 1979 Aug;381(2):127–135. doi: 10.1007/BF00582343. [DOI] [PubMed] [Google Scholar]
  13. Hastings D. F., Reynolds J. A. Molecular weight of (Na+,K+)ATPase from shark rectal gland. Biochemistry. 1979 Mar 6;18(5):817–821. doi: 10.1021/bi00572a012. [DOI] [PubMed] [Google Scholar]
  14. Hebert H., Jørgensen P. L., Skriver E., Maunsbach A. B. Crystallization patterns of membrane-bound (Na+ +K+)-ATPase. Biochim Biophys Acta. 1982 Aug 12;689(3):571–574. doi: 10.1016/0005-2736(82)90316-9. [DOI] [PubMed] [Google Scholar]
  15. Heidner E. G., Frey T. G., Held U., Weissman L. J., Fenna R. E., Lei M., Harel M., Kabsch H., Sweet R. M., Eisenberg D. New crystal forms of glutamine synthetase and implications for the molecular structure. J Mol Biol. 1978 Jun 25;122(2):163–173. doi: 10.1016/0022-2836(78)90033-5. [DOI] [PubMed] [Google Scholar]
  16. Hermann R., Jaenicke R., Rudolph R. Analysis of the reconstitution of oligomeric enzymes by cross-linking with glutaraldehyde: kinetics of reassociation of lactic dehydrogenase. Biochemistry. 1981 Sep 1;20(18):5195–5201. doi: 10.1021/bi00521a015. [DOI] [PubMed] [Google Scholar]
  17. Hokin L. E., Dahl J. L., Deupree J. D., Dioxon J. F., Hackney J. F., Perdue J. F. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem. 1973 Apr 10;248(7):2593–2605. [PubMed] [Google Scholar]
  18. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
  19. Jorgensen P. L., Skou J. C. Preparation of highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidney. Biochem Biophys Res Commun. 1969 Sep 24;37(1):39–46. doi: 10.1016/0006-291x(69)90877-8. [DOI] [PubMed] [Google Scholar]
  20. Kyte J. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7642–7649. [PubMed] [Google Scholar]
  21. Kyte J. Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla. J Biol Chem. 1971 Jul 10;246(13):4157–4165. [PubMed] [Google Scholar]
  22. Kyte J. Structural studies of sodium and potassium ion-activated adenosine triphosphatase. The relationship between molecular structure and the mechanism of active transport. J Biol Chem. 1975 Sep 25;250(18):7443–7449. [PubMed] [Google Scholar]
  23. Lecuyer H., Dervichian D. G. Structure of aqueous mixtures of lecithin and cholesterol. J Mol Biol. 1969 Oct 14;45(1):39–57. doi: 10.1016/0022-2836(69)90208-3. [DOI] [PubMed] [Google Scholar]
  24. Liang S. M., Winter C. G. Digitonin-induced changes in subunit arrangement in relation to some in vitro activities of the (Na+,K+)-ATPase. J Biol Chem. 1977 Nov 25;252(22):8278–8284. [PubMed] [Google Scholar]
  25. Michel H., Oesterhelt D., Henderson R. Orthorhombic two-dimensional crystal form of purple membrane. Proc Natl Acad Sci U S A. 1980 Jan;77(1):338–342. doi: 10.1073/pnas.77.1.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moczydlowski E. G., Fortes P. A. Inhibition of sodium and potassium adenosine triphosphatase by 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) adenine nucleotides. Implications for the structure and mechanism of the Na:K pump. J Biol Chem. 1981 Mar 10;256(5):2357–2366. [PubMed] [Google Scholar]
  27. Munson K. B. Light-dependent inactivation of (Na+ + K+)-ATPase with a new photoaffinity reagent, chromium arylazido-beta-alanyl ATP. J Biol Chem. 1981 Apr 10;256(7):3223–3230. [PubMed] [Google Scholar]
  28. O'Connell M. A. Exclusive labeling of the extracytoplasmic surface of sodium ion and potassium ion activated adenosinetriphosphatase and a determination of the distribution of surface area across the bilayer. Biochemistry. 1982 Nov 9;21(23):5984–5991. doi: 10.1021/bi00266a040. [DOI] [PubMed] [Google Scholar]
  29. Olsnes S., Saltvedt E., Pihl A. Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem. 1974 Feb 10;249(3):803–810. [PubMed] [Google Scholar]
  30. Peterson G. L., Hokin L. E. Molecular weight and stoichiometry of the sodium- and potassium-activated adenosine triphosphatase subunits. J Biol Chem. 1981 Apr 25;256(8):3751–3761. [PubMed] [Google Scholar]
  31. Ruoho A., Kyte J. Photoaffinity labeling of the ouabain-binding site on (Na+ plus K+) adenosinetriphosphatase. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2352–2356. doi: 10.1073/pnas.71.6.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Salmon E. D., DeRosier D. A surveying optical diffractometer. J Microsc. 1981 Sep;123(Pt 3):239–247. doi: 10.1111/j.1365-2818.1981.tb02468.x. [DOI] [PubMed] [Google Scholar]
  33. Sealock R. Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic-acid-mediated negative contrasting. J Cell Biol. 1982 Feb;92(2):514–522. doi: 10.1083/jcb.92.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sharkey R. G. Lactoperoxidase-catalyzed iodination of sodium and potassium ion-activated adenosine triphosphatase in the Madin-Darby canine kidney epithelial cell line and canine renal membranes. Biochim Biophys Acta. 1983 May 5;730(2):327–341. doi: 10.1016/0005-2736(83)90350-4. [DOI] [PubMed] [Google Scholar]
  35. Skriver E., Maunsbach A. B., Jørgensen P. L. Formation of two-dimensional crystals in pure membrane-bound Na+,K+-ATPase. FEBS Lett. 1981 Aug 31;131(2):219–222. doi: 10.1016/0014-5793(81)80371-7. [DOI] [PubMed] [Google Scholar]
  36. Uesugi S., Dulak N. C., Dixon J. F., Hexum T. D., Dahl J. L., Perdue J. F., Hokin L. E. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a lubrol-solubilized bovine brain enzyme. J Biol Chem. 1971 Jan 25;246(2):531–543. [PubMed] [Google Scholar]
  37. Vogel F., Meyer H. W., Grosse R., Repke K. R. Electron microscopic visualization of the arrangement of the two protein components of (Na+ + K+)-ATPase. Biochim Biophys Acta. 1977 Nov 1;470(3):497–502. doi: 10.1016/0005-2736(77)90141-9. [DOI] [PubMed] [Google Scholar]
  38. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  39. Winslow J. W. The reaction of sulfhydryl groups of sodium and potassium ion-activated adenosine triphosphatase with N-ethylmaleimide. The relationship between ligand-dependent alterations of nucleophilicity and enzymatic conformational states. J Biol Chem. 1981 Sep 25;256(18):9522–9531. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES