Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1899–1904. doi: 10.1083/jcb.98.5.1899

Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin

PMCID: PMC2113180  PMID: 6233291

Abstract

Ankyrin is an extrinsic membrane protein in human erythrocytes that links the alpha beta-spectrin-based extrinsic membrane skeleton to the membrane by binding simultaneously to the beta-spectrin subunit and to the transmembrane anion transporter. To analyse the temporal and spatial regulation of assembly of this membrane skeleton, we investigated the kinetics of synthesis and assembly of ankyrin ( goblin ) with respect to those of spectrin in chicken embryo erythroid cells. Electrophoretic analysis of Triton X-100 soluble and cytoskeletal fractions show that at steady state both ankyrin and spectrin are detected exclusively in the cytoskeleton. In contrast, continuous labeling of erythroid cells with [35S]methionine, and immunoprecipitation of ankyrin and alpha- and beta-spectrin, reveals that newly synthesized ankyrin and spectrin are partitioned into both the cytoskeletal and Triton X-100 soluble fractions. The soluble pools of ankyrin and beta-spectrin reach a plateau of labeling within 1 h, whereas the soluble pool of alpha-spectrin is substantially larger and reaches a plateau more slowly, reflecting an approximately 3:1 ratio of synthesis of alpha- to beta-spectrin. Ankyrin and beta-spectrin enter the cytoskeletal fraction within 10 min of labeling, and the amount assembled into the cytoskeletal fraction exceeds the amount present in their respective soluble pools within 1 h of labeling. Although alpha- spectrin enters the cytoskeletal fraction with similar kinetics to beta- spectrin and ankyrin, and in amounts equimolar to beta-spectrin, the amount of cytoskeletal alpha-spectrin does not exceed the amount of soluble alpha-spectrin even after 3 h of labeling. Pulse-chase labeling experiments reveal that ankyrin and alpha- and beta-spectrin assembled into the cytoskeleton exhibit no detectable turnover, whereas the Triton X-100 soluble polypeptides are rapidly catabolized, suggesting that stable assembly of the three polypeptides is dependent upon their association with their respective membrane receptor(s). The existence in the detergent-soluble compartment of newly synthesized ankyrin and alpha- and beta-spectrin that are catabolized, rather than assembled, suggests that ankyrin and spectrin are synthesized in excess of available respective membrane binding sites, and that the assembly of these polypeptides, while rapid, is not tightly coupled to their synthesis. We hypothesize that the availability of the high affinity receptor(s) localized on the membrane mediates posttranslationally the extent of assembly of the three cytoskeletal proteins in the correct stoichiometry, their stability, and their spatial localization.

Full Text

The Full Text of this article is available as a PDF (747.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper S. L., Beam K. G., Greengard P. Hormonal control of Na+-K+ co-transport in turkey erythrocytes. Multiple site phosphorylation of goblin, a high molecular weight protein of the plasma membrane. J Biol Chem. 1980 May 25;255(10):4864–4871. [PubMed] [Google Scholar]
  2. Alper S. L., Palfrey H. C., DeRiemer S. A., Greengard P. Hormonal control of protein phosphorylation in turkey erythrocytes. Phosphorylation by cAMP-dependent and Ca2+-dependent protein kinases of distinct sites in goblin, a high molecular weight protein of the plasma membrane. J Biol Chem. 1980 Nov 25;255(22):11029–11039. [PubMed] [Google Scholar]
  3. Beam K. G., Alper S. L., Palade G. E., Greengard P. Hormonally regulated phosphoprotein of turkey erythrocytes: localization to plasma membrane. J Cell Biol. 1979 Oct;83(1):1–15. doi: 10.1083/jcb.83.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett V., Davis J., Fowler W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982 Sep 9;299(5879):126–131. doi: 10.1038/299126a0. [DOI] [PubMed] [Google Scholar]
  5. Bennett V. Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Nature. 1979 Oct 18;281(5732):597–599. doi: 10.1038/281597a0. [DOI] [PubMed] [Google Scholar]
  6. Bennett V., Stenbuck P. J. Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J Biol Chem. 1980 Jul 10;255(13):6424–6432. [PubMed] [Google Scholar]
  7. Bennett V., Stenbuck P. J. Human erythrocyte ankyrin. Purification and properties. J Biol Chem. 1980 Mar 25;255(6):2540–2548. [PubMed] [Google Scholar]
  8. Bennett V., Stenbuck P. J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1979 Apr 10;254(7):2533–2541. [PubMed] [Google Scholar]
  9. Bennett V., Stenbuck P. J. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979 Aug 9;280(5722):468–473. doi: 10.1038/280468a0. [DOI] [PubMed] [Google Scholar]
  10. Bennett V. The molecular basis for membrane - cytoskeleton association in human erythrocytes. J Cell Biochem. 1982;18(1):49–65. doi: 10.1002/jcb.1982.240180106. [DOI] [PubMed] [Google Scholar]
  11. Blikstad I., Lazarides E. Synthesis of spectrin in avian erythroid cells: association of nascent polypeptide chains with the cytoskeleton. Proc Natl Acad Sci U S A. 1983 May;80(9):2637–2641. doi: 10.1073/pnas.80.9.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blikstad I., Nelson W. J., Moon R. T., Lazarides E. Synthesis and assembly of spectrin during avian erythropoiesis: stoichiometric assembly but unequal synthesis of alpha and beta spectrin. Cell. 1983 Apr;32(4):1081–1091. doi: 10.1016/0092-8674(83)90292-1. [DOI] [PubMed] [Google Scholar]
  13. Braell W. A., Lodish H. F. Biosynthesis of the erythrocyte anion transport protein. J Biol Chem. 1981 Nov 10;256(21):11337–11344. [PubMed] [Google Scholar]
  14. Braell W. A., Lodish H. F. The erythrocyte anion transport protein is contranslationally inserted into microsomes. Cell. 1982 Jan;28(1):23–31. doi: 10.1016/0092-8674(82)90371-3. [DOI] [PubMed] [Google Scholar]
  15. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  16. Burridge K., Kelly T., Mangeat P. Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol. 1982 Nov;95(2 Pt 1):478–486. doi: 10.1083/jcb.95.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cohen C. M. The molecular organization of the red cell membrane skeleton. Semin Hematol. 1983 Jul;20(3):141–158. [PubMed] [Google Scholar]
  18. Glenney J. R., Jr, Glenney P., Weber K. F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J Biol Chem. 1982 Aug 25;257(16):9781–9787. [PubMed] [Google Scholar]
  19. Goodman S. R., Shiffer K. The spectrin membrane skeleton of normal and abnormal human erythrocytes: a review. Am J Physiol. 1983 Mar;244(3):C121–C141. doi: 10.1152/ajpcell.1983.244.3.C121. [DOI] [PubMed] [Google Scholar]
  20. Goodman S. R., Zagon I. S., Kulikowski R. R. Identification of a spectrin-like protein in nonerythroid cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7570–7574. doi: 10.1073/pnas.78.12.7570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Granger B. L., Repasky E. A., Lazarides E. Synemin and vimentin are components of intermediate filaments in avian erythrocytes. J Cell Biol. 1982 Feb;92(2):299–312. doi: 10.1083/jcb.92.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hargreaves W. R., Giedd K. N., Verkleij A., Branton D. Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles. J Biol Chem. 1980 Dec 25;255(24):11965–11972. [PubMed] [Google Scholar]
  23. Jackson R. C. The exterior surface of the chicken erythrocyte. J Biol Chem. 1975 Jan 25;250(2):617–622. [PubMed] [Google Scholar]
  24. Jay D. G. Characterization of the chicken erythrocyte anion exchange protein. J Biol Chem. 1983 Aug 10;258(15):9431–9436. [PubMed] [Google Scholar]
  25. Lazarides E., Nelson W. J. Erythrocyte and brain forms of spectrin in cerebellum: distinct membrane-cytoskeletal domains in neurons. Science. 1983 Jun 17;220(4603):1295–1296. doi: 10.1126/science.6190228. [DOI] [PubMed] [Google Scholar]
  26. Litman D., Hsu D. J., Marchesi V. T. Evidence that spectrin binds to macromolecular complexes on the inner surface of the red cell membrane. J Cell Sci. 1980 Apr;42:1–22. doi: 10.1242/jcs.42.1.1. [DOI] [PubMed] [Google Scholar]
  27. Lodish H. F. Biosynthesis of reticulocyte membrane proteins by membrane-free polyribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1526–1530. doi: 10.1073/pnas.70.5.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lodish H. F., Small B. Membrane proteins synthesized by rabbit reticulocytes. J Cell Biol. 1975 Apr;65(1):51–64. doi: 10.1083/jcb.65.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luna E. J., Kidd G. H., Branton D. Identification by peptide analysis of the spectrin-binding protein in human erythrocytes. J Biol Chem. 1979 Apr 10;254(7):2526–2532. [PubMed] [Google Scholar]
  30. Lux S. E. Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Semin Hematol. 1979 Jan;16(1):21–51. [PubMed] [Google Scholar]
  31. Marchesi V. T. The red cell membrane skeleton: recent progress. Blood. 1983 Jan;61(1):1–11. [PubMed] [Google Scholar]
  32. Moon R. T., Lazarides E. Canavanine inhibits vimentin assembly but not its synthesis in chicken embryo erythroid cells. J Cell Biol. 1983 Oct;97(4):1309–1314. doi: 10.1083/jcb.97.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moon R. T., Lazarides E. Synthesis and post-translational assembly of intermediate filaments in avian erythroid cells: vimentin assembly limits the rate of synemin assembly. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5495–5499. doi: 10.1073/pnas.80.18.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morrow J. S., Marchesi V. T. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J Cell Biol. 1981 Feb;88(2):463–468. doi: 10.1083/jcb.88.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nelson W. J., Lazarides E. Switching of subunit composition of muscle spectrin during myogenesis in vitro. 1983 Jul 28-Aug 3Nature. 304(5924):364–368. doi: 10.1038/304364a0. [DOI] [PubMed] [Google Scholar]
  36. Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
  37. Tyler J. M., Reinhardt B. N., Branton D. Associations of erythrocyte membrane proteins. Binding of purified bands 2.1 and 4.1 to spectrin. J Biol Chem. 1980 Jul 25;255(14):7034–7039. [PubMed] [Google Scholar]
  38. Weise M. J., Chan L. N. Membrane protein synthesis in embryonic chick erythroid cells. J Biol Chem. 1978 Mar 25;253(6):1892–1897. [PubMed] [Google Scholar]
  39. Weise M. J., Ingram V. M. Proteins and glycoproteins of membranes from developing chick red cells. J Biol Chem. 1976 Nov 10;251(21):6667–6673. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES