Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1836–1841. doi: 10.1083/jcb.98.5.1836

Structure of (Na+,K+)-ATPase as revealed by electron microscopy and image processing

PMCID: PMC2113190  PMID: 6327721

Abstract

(Na+,K+)-ATPase was studied by electron microscopy and image processing of negatively stained and freeze-dried and shadowed crystalline sheets induced by a number of inorganic salts. Extensive experiments have identified new conditions for optimum crystal formation. Two crystal forms have been observed, one with a monomer and the other with a dimer, in the unit cell. Both show the same structure for the enzyme monomer. The enzyme can also be crystallized after partial proteolysis of its alpha subunit by trypsin. The proteolysed enzyme crystallizes under the same conditions as the whole enzyme. Comparison of the mass distributions in the images of the intact and proteolysed enzyme has allowed the tentative identification of the location of the alpha subunit within the monomer. The relationship between the structure of the crystallized enzyme and that of the enzyme in its native form is discussed, as is its apparent close structural relationship to the calcium-ATPase.

Full Text

The Full Text of this article is available as a PDF (898.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi U., Fowler W. E., Isenberg G., Pollard T. D., Smith P. R. Crystalline actin sheets: their structure and polymorphism. J Cell Biol. 1981 Nov;91(2 Pt 1):340–351. doi: 10.1083/jcb.91.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
  3. Castellani L., Hardwicke P. M. Crystalline structure of sarcoplasmic reticulum from scallop. J Cell Biol. 1983 Aug;97(2):557–561. doi: 10.1083/jcb.97.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castro J., Farley R. A. Proteolytic fragmentation of the catalytic subunit of the sodium and potassium adenosine triphosphatase. Alignment of tryptic and chymotryptic fragments and location of sites labeled with ATP and iodoacetate. J Biol Chem. 1979 Apr 10;254(7):2221–2228. [PubMed] [Google Scholar]
  5. Dux L., Martonosi A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem. 1983 Feb 25;258(4):2599–2603. [PubMed] [Google Scholar]
  6. Fowler W. E., Aebi U. Preparation of single molecules and supramolecular complexes for high-resolution metal shadowing. J Ultrastruct Res. 1983 Jun;83(3):319–334. doi: 10.1016/s0022-5320(83)90139-9. [DOI] [PubMed] [Google Scholar]
  7. Hebert H., Jørgensen P. L., Skriver E., Maunsbach A. B. Crystallization patterns of membrane-bound (Na+ +K+)-ATPase. Biochim Biophys Acta. 1982 Aug 12;689(3):571–574. doi: 10.1016/0005-2736(82)90316-9. [DOI] [PubMed] [Google Scholar]
  8. Jorgensen P. L. Isolation of (Na+ plus K+)-ATPase. Methods Enzymol. 1974;32:277–290. [PubMed] [Google Scholar]
  9. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
  10. Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
  11. Jorgensen P. L., Skou J. C., Solomonson L. P. Purification and characterization of (Na+ + K+)-ATPase. II. Preparation by zonal centrifugation of highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidneys. Biochim Biophys Acta. 1971 Apr 13;233(2):381–394. doi: 10.1016/0005-2736(71)90335-x. [DOI] [PubMed] [Google Scholar]
  12. Jørgensen P. L. Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase. Biochim Biophys Acta. 1982 Aug 11;694(1):27–68. doi: 10.1016/0304-4157(82)90013-2. [DOI] [PubMed] [Google Scholar]
  13. Kyte J. Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla. J Biol Chem. 1971 Jul 10;246(13):4157–4165. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  16. Simons T. J. Vanadate--a new tool for biologists. Nature. 1979 Oct 4;281(5730):337–338. doi: 10.1038/281337a0. [DOI] [PubMed] [Google Scholar]
  17. Skriver E., Maunsbach A. B., Jørgensen P. L. Formation of two-dimensional crystals in pure membrane-bound Na+,K+-ATPase. FEBS Lett. 1981 Aug 31;131(2):219–222. doi: 10.1016/0014-5793(81)80371-7. [DOI] [PubMed] [Google Scholar]
  18. Smith P. R. Freeze-drying specimens for electron microscopy. J Ultrastruct Res. 1980 Sep;72(3):380–384. doi: 10.1016/s0022-5320(80)90072-6. [DOI] [PubMed] [Google Scholar]
  19. Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES