Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1895–1898. doi: 10.1083/jcb.98.5.1895

Glial fibrillary acidic protein is localized in the lens epithelium

PMCID: PMC2113194  PMID: 6373785

Abstract

The epithelium of the mouse lens stains intensely with antisera to glial fibrillary acidic protein (GFAP). A protein co-migrating with GFAP and immunoreactive with antisera to GFAP can be demonstrated in lens epithelium protein extracts by immunoblots. GFAP has previously been considered unique to cells of neural origin, but this study demonstrates that ectodermally derived cells express GFAP or a highly similar protein.

Full Text

The Full Text of this article is available as a PDF (497.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaducci L., Forno K. I., Eng L. F. Glial fibrillary acidic protein in cryogenic lesions of the rat brain. Neurosci Lett. 1981 Jan 1;21(1):27–32. doi: 10.1016/0304-3940(81)90052-5. [DOI] [PubMed] [Google Scholar]
  2. Bignami A., Dahl D. Specificity of the glial fibrillary acidic protein for astroglia. J Histochem Cytochem. 1977 Jun;25(6):466–469. doi: 10.1177/25.6.69656. [DOI] [PubMed] [Google Scholar]
  3. Bignami A., Eng L. F., Dahl D., Uyeda C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972 Aug 25;43(2):429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
  4. Bignami A., Raju T., Dahl D. Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol. 1982 Jun;91(2):286–295. doi: 10.1016/0012-1606(82)90035-5. [DOI] [PubMed] [Google Scholar]
  5. Bradley R. H., Ireland M., Maisel H. The cytoskeleton of chick lens cells. Exp Eye Res. 1979 Apr;28(4):441–453. doi: 10.1016/0014-4835(79)90119-2. [DOI] [PubMed] [Google Scholar]
  6. COONS A. H. Fluorescent antibody methods. Gen Cytochem Methods. 1958;1:399–422. [PubMed] [Google Scholar]
  7. Chiu F. C., Norton W. T., Fields K. L. The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein, and the fibroblast-type filament protein, vimentin. J Neurochem. 1981 Jul;37(1):147–155. doi: 10.1111/j.1471-4159.1981.tb05302.x. [DOI] [PubMed] [Google Scholar]
  8. Cook R. D., Burnstock G. The ultrastructure of Auerbach's plexus in the guinea-pig. II. Non-neuronal elements. J Neurocytol. 1976 Apr;5(2):195–206. doi: 10.1007/BF01181656. [DOI] [PubMed] [Google Scholar]
  9. Dahl D., Chi N. H., Miles L. E., Nguyen B. T., Bignami A. Glial fibrillary acidic (GFA) protein in Schwann cells: fact or artifact? J Histochem Cytochem. 1982 Sep;30(9):912–918. doi: 10.1177/30.9.6182187. [DOI] [PubMed] [Google Scholar]
  10. Dixon R. G., Eng L. F. Glial fibrillary acidic protein in the optic nerve of the developing albino rat: an immunoperoxidase study of paraffin-embedded tissue. J Comp Neurol. 1981 Sep 1;201(1):15–24. doi: 10.1002/cne.902010103. [DOI] [PubMed] [Google Scholar]
  11. Eng L. F., Rubinstein L. J. Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem. 1978 Jul;26(7):513–522. doi: 10.1177/26.7.357640. [DOI] [PubMed] [Google Scholar]
  12. Eng L. F., Vanderhaeghen J. J., Bignami A., Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971 May 7;28(2):351–354. doi: 10.1016/0006-8993(71)90668-8. [DOI] [PubMed] [Google Scholar]
  13. Gabella G. Fine structure of the myenteric plexus in the guinea-pig ileum. J Anat. 1972 Jan;111(Pt 1):69–97. [PMC free article] [PubMed] [Google Scholar]
  14. Jessen K. R., Mirsky R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature. 1980 Aug 14;286(5774):736–737. doi: 10.1038/286736a0. [DOI] [PubMed] [Google Scholar]
  15. Kinoshita J. H. Mechanisms initiating cataract formation. Proctor Lecture. Invest Ophthalmol. 1974 Oct;13(10):713–724. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Levitt P., Cooper M. L., Rakic P. Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci. 1981 Jan;1(1):27–39. doi: 10.1523/JNEUROSCI.01-01-00027.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lieska N., Chen J., Maisel H., Romero-Herrera A. E. Subunit characterization of lens intermediate filaments. Biochim Biophys Acta. 1980 Nov 20;626(1):136–153. doi: 10.1016/0005-2795(80)90205-6. [DOI] [PubMed] [Google Scholar]
  19. Lonchampt M. O., Laurent M., Courtois Y., Trenchev P., Hughes R. C. Microtubules and microfilaments of bovine lens epithelial cells: electron microscopy and immunofluorescence staining with specific antibodies. Exp Eye Res. 1976 Nov;23(5):505–518. doi: 10.1016/0014-4835(76)90159-7. [DOI] [PubMed] [Google Scholar]
  20. Nakane P K, Pierce G B., Jr Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem. 1966 Dec;14(12):929–931. doi: 10.1177/14.12.929. [DOI] [PubMed] [Google Scholar]
  21. Nakazato Y., Ishizeki J., Takahashi K., Yamaguchi H., Kamei T., Mori T. Localization of S-100 protein and glial fibrillary acidic protein-related antigen in pleomorphic adenoma of the salivary glands. Lab Invest. 1982 Jun;46(6):621–626. [PubMed] [Google Scholar]
  22. O'RAHILLY R., MEYER D. B. The early development of the eye in the chick Gallus domesticus (stages 8 to 25). Acta Anat (Basel) 1959;36(1-2):20–58. doi: 10.1159/000141425. [DOI] [PubMed] [Google Scholar]
  23. Okada T. S., Ito Y., Watanabe K., Eguchi G. Differentiation of lens in cultures of neural retinal cells of chick embryos. Dev Biol. 1975 Aug;45(2):318–329. doi: 10.1016/0012-1606(75)90069-x. [DOI] [PubMed] [Google Scholar]
  24. Pritchard D. J., Clayton R. M., de Pomerai D. I. 'Transdifferentiation' of chicken neural retina into lens and pigment epithelium in culture: controlling influences. J Embryol Exp Morphol. 1978 Dec;48:1–21. [PubMed] [Google Scholar]
  25. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  26. Rafferty N. S., Esson E. A. An electron-microscope study of adult mouse lens: some ultrastructural specializations. J Ultrastruct Res. 1974 Feb;46(2):239–253. doi: 10.1016/s0022-5320(74)80059-6. [DOI] [PubMed] [Google Scholar]
  27. Rafferty N. S., Goossens W. Cytoplasmic filaments in the crystalline lens of various species: functional correlations. Exp Eye Res. 1978 Feb;26(2):177–190. doi: 10.1016/0014-4835(78)90115-x. [DOI] [PubMed] [Google Scholar]
  28. Rafferty N. S., Goossens W. Ultrastructural studies of traumatic cataractogenesis: observations of a repair process in mouse lens. Am J Anat. 1975 Feb;142(2):177–199. doi: 10.1002/aja.1001420204. [DOI] [PubMed] [Google Scholar]
  29. Salm A. K., Hatton G. I., Nilaver G. Immunoreactive glial fibrillary acidic protein in pituicytes of the rat neurohypophysis. Brain Res. 1982 Mar 25;236(2):471–476. doi: 10.1016/0006-8993(82)90729-6. [DOI] [PubMed] [Google Scholar]
  30. Schnitzer J., Franke W. W., Schachner M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol. 1981 Aug;90(2):435–447. doi: 10.1083/jcb.90.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  32. Sternberger L. A., Hardy P. H., Jr, Cuculis J. J., Meyer H. G. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970 May;18(5):315–333. doi: 10.1177/18.5.315. [DOI] [PubMed] [Google Scholar]
  33. Suess U., Pliska V. Identification of the pituicytes as astroglial cells by indirect immunofluorescence-staining for the glial fibrillary acidic protein. Brain Res. 1981 Sep 21;221(1):27–33. doi: 10.1016/0006-8993(81)91061-1. [DOI] [PubMed] [Google Scholar]
  34. Trimmer P. A., Reier P. J., Oh T. H., Eng L. F. An ultrastructural and immunocytochemical study of astrocytic differentiation in vitro: changes in the composition and distribution of the cellular cytoskeleton. J Neuroimmunol. 1982 Jun;2(3-4):235–260. doi: 10.1016/0165-5728(82)90058-3. [DOI] [PubMed] [Google Scholar]
  35. Uyeda C. T., Eng L. F., Bignami A. Immunological study of the glial fibrillary acidic protein. Brain Res. 1972 Feb 11;37(1):81–89. doi: 10.1016/0006-8993(72)90347-2. [DOI] [PubMed] [Google Scholar]
  36. Yen S. H., Fields K. L. Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system. J Cell Biol. 1981 Jan;88(1):115–126. doi: 10.1083/jcb.88.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES