Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1878–1885. doi: 10.1083/jcb.98.5.1878

A new method of preparing embeddment-free sections for transmission electron microscopy: applications to the cytoskeletal framework and other three-dimensional networks

PMCID: PMC2113197  PMID: 6539336

Abstract

Diethylene glycol distearate is used as a removable embedding medium to produce embeddment -free sections for transmission electron microscopy. The easily cut sections of this material float and form ribbons in a water-filled knife trough and exhibit interference colors that aid in the selection of sections of equal thickness. The images obtained with embeddment -free sections are compared with those from the more conventional epoxy-embedded sections, and illustrate that embedding medium can obscure important biological structures, especially protein filament networks. The embeddment -free section methodology is well suited for morphological studies of cytoskeletal preparations obtained by extraction of cells with nonionic detergent in cytoskeletal stabilizing medium. The embeddment -free section also serves to bridge the very different images afforded by embedded sections and unembedded whole mounts.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capco D. G., Jeffery W. R. Differential distribution of poly(A)-containing RNA in the embryonic cells of Oncopeltus fasciatus. Analysis by in situ hybridization with a [3H]poly(U) probe. Dev Biol. 1978 Nov;67(1):137–151. doi: 10.1016/0012-1606(78)90305-6. [DOI] [PubMed] [Google Scholar]
  2. Capco D. G., Jeffrey W. R. Transient localizations of messenger RNA in Xenopus laevis oocytes. Dev Biol. 1982 Jan;89(1):1–12. doi: 10.1016/0012-1606(82)90288-3. [DOI] [PubMed] [Google Scholar]
  3. Capco D. G., Jäckle H. Localized protein synthesis during oogenesis of Xenopus laevis: analysis by in situ translation. Dev Biol. 1982 Nov;94(1):41–50. doi: 10.1016/0012-1606(82)90066-5. [DOI] [PubMed] [Google Scholar]
  4. Capco D. G., Penman S. Mitotic architecture of the cell: the filament networks of the nucleus and cytoplasm. J Cell Biol. 1983 Mar;96(3):896–906. doi: 10.1083/jcb.96.3.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capco D. G., Wan K. M., Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell. 1982 Jul;29(3):847–858. doi: 10.1016/0092-8674(82)90446-9. [DOI] [PubMed] [Google Scholar]
  6. Graham E. T. Improved diethylene glycol distearate embedding wax. Stain Technol. 1982 Jan;57(1):39–43. doi: 10.3109/10520298209066518. [DOI] [PubMed] [Google Scholar]
  7. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pardue R. L., Brady R. C., Perry G. W., Dedman J. R. Production of monoclonal antibodies against calmodulin by in vitro immunization of spleen cells. J Cell Biol. 1983 Apr;96(4):1149–1154. doi: 10.1083/jcb.96.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Penman S., Fulton A., Capco D., Ben Ze'ev A., Wittelsberger S., Tse C. F. Cytoplasmic and nuclear architecture in cells and tissue: form, functions, and mode of assembly. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):1013–1028. doi: 10.1101/sqb.1982.046.01.094. [DOI] [PubMed] [Google Scholar]
  10. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rindler M. J., Chuman L. M., Shaffer L., Saier M. H., Jr Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J Cell Biol. 1979 Jun;81(3):635–648. doi: 10.1083/jcb.81.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SALAZAR H. DIETHYLENE GLYCOL DISTEARATE EMBEDDING AND ULTRAMICROTOME SECTIONING FOR LIGHT MICROSCOPY. Stain Technol. 1964 Jan;39:13–17. doi: 10.3109/10520296409061202. [DOI] [PubMed] [Google Scholar]
  13. SHALLA T. A., CARROLL T. W., DEZOETEN G. A. PENETRATION OF STAIN IN ULTRATHIN SECTIONS OF TOBACCO MOSAIC VIRUS. Stain Technol. 1964 Sep;39:257–265. doi: 10.3109/10520296409061241. [DOI] [PubMed] [Google Scholar]
  14. Singer R. H., Ward D. C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7331–7335. doi: 10.1073/pnas.79.23.7331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Taleporos P. Diethylene glycol distearate as an embedding medium for high resolution light microscopy. J Histochem Cytochem. 1974 Jan;22(1):29–34. doi: 10.1177/22.1.29. [DOI] [PubMed] [Google Scholar]
  16. Taleporos P. The composition and cutting properties of diethylene glycol distearate from various sources. J Histochem Cytochem. 1976 Dec;24(12):1285–1286. doi: 10.1177/24.12.1002977. [DOI] [PubMed] [Google Scholar]
  17. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wolosewick J. J., Porter K. R. Stereo high-voltage electron microscopy of whole cells of the human diploid line, WI-38. Am J Anat. 1976 Nov;147(3):303–323. doi: 10.1002/aja.1001470305. [DOI] [PubMed] [Google Scholar]
  19. Wolosewick J. J. The application of polyethylene glycol (PEG) to electron microscopy. J Cell Biol. 1980 Aug;86(2):675–661. doi: 10.1083/jcb.86.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES