Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1685–1695. doi: 10.1083/jcb.98.5.1685

Regeneration of the active zone at the frog neuromuscular junction

PMCID: PMC2113198  PMID: 6327719

Abstract

The active zone is a unique specialization of the presynaptic membrane and is believed to be the site of transmitter release. The formation of the active zone and the relationship of this process to transmitter release were studied at reinnervated neuromuscular junctions in the frog. At different times after a nerve crush, the cutaneous pectoris muscles were examined with intracellular recording recording and freeze- fracture electron microscopy. The P face of a normal active zone typically consists of two double rows of particles lined up in a continuous segment located opposite a junctional fold. In the initial stage of reinnervation, clusters of large intramembrane particles surrounding membrane elevations appeared on the P face of nerve terminals. Like normal active zones, these clusters were aligned with junctional folds. Vesicle openings, which indicate transmitter release, were seen at these primitive active zones, even though intramembrane particles were not yet organized into the normal pattern of two double rows. The length of active zones at this stage was only approximately 15% of normal. During the secondary stage, every junction was reinnervated and most active zones had begun to organize into the normal pattern with normal orientation. Unlike normal, there were often two or more discontinuous short segments of active zone aligned with the same junctional fold. The total length of active zone per junctional fold increased to one-third of normal, mainly because of the greater number of segments. In the third stage, the number of active zone segments per junctional fold showed almost no change when compared with the secondary stage. However, individual segments elongated and increased the total length of all active zone segments per junctional fold to about two-thirds of the normal length. The dynamic process culminated in the final stage, during which elongating active zones appeared to join together and the number of active zone segments per junctional fold decreased to normal. Thus, in most regions, regeneration of the active zones was complete. These results suggest that the normal organization of two double rows is not necessary for the active zone to be functional. Furthermore, localization of regenerating active zones is related to junctional folds and/or their associated structures.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ceccarelli B., Grohovaz F., Hurlbut W. P. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+-free solutions on the structure of the active zone. J Cell Biol. 1979 Apr;81(1):163–177. doi: 10.1083/jcb.81.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ceccarelli B., Grohovaz F., Hurlbut W. P. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. II. Effects of electrical stimulation and high potassium. J Cell Biol. 1979 Apr;81(1):178–192. doi: 10.1083/jcb.81.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Couteaux R., Fessard M. A. Facteurs de la différenciation des "zones actives" des membranes présynaptiques. C R Acad Sci Hebd Seances Acad Sci D. 1975 Jan 20;280(3):299–301. [PubMed] [Google Scholar]
  5. Couteaux R., Pécot-Dechavassine M. Vésicules synaptiques et poches au niveau des "zones actives" de la jonction neuromusculaire. C R Acad Sci Hebd Seances Acad Sci D. 1970 Dec 21;271(25):2346–2349. [PubMed] [Google Scholar]
  6. Decino P. Transmitter release properties along regenerated nerve processes at the frog neuromuscular junction. J Neurosci. 1981 Mar;1(3):308–317. doi: 10.1523/JNEUROSCI.01-03-00308.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dennis M. J. Development of the neuromuscular junction: inductive interactions between cells. Annu Rev Neurosci. 1981;4:43–68. doi: 10.1146/annurev.ne.04.030181.000355. [DOI] [PubMed] [Google Scholar]
  8. Ding R. Lack of correlation between physiological and morphological features of regenerating frog neuromuscular junctions. Brain Res. 1982 Dec 16;253(1-2):47–55. doi: 10.1016/0006-8993(82)90672-2. [DOI] [PubMed] [Google Scholar]
  9. Dreyer F., Peper K., Akert K., Sandri C., Moor H. Ultrastructure of the "active zone" in the frog neuromuscular junction. Brain Res. 1973 Nov 23;62(2):373–380. doi: 10.1016/0006-8993(73)90699-9. [DOI] [PubMed] [Google Scholar]
  10. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heuser J. E., Reese T. S., Landis D. M. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol. 1974 Mar;3(1):109–131. doi: 10.1007/BF01111936. [DOI] [PubMed] [Google Scholar]
  13. Heuser J. E., Reese T. S. Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol. 1981 Mar;88(3):564–580. doi: 10.1083/jcb.88.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ko C. P. Electrophysiological and freeze-fracture studies of changes following denervation at frog neuromuscular junctions. J Physiol. 1981 Dec;321:627–639. doi: 10.1113/jphysiol.1981.sp014007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kullberg R. W., Lentz T. L., Cohen M. W. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev Biol. 1977 Oct 1;60(1):101–129. doi: 10.1016/0012-1606(77)90113-0. [DOI] [PubMed] [Google Scholar]
  16. Letinsky M. S., Fischbeck K. H., McMahan U. J. Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol. 1976 Dec;5(6):691–718. doi: 10.1007/BF01181582. [DOI] [PubMed] [Google Scholar]
  17. Lynch K., Ko C. P. Presynaptic active zones at neuromuscular junctions of larval frogs. Dev Biol. 1983 May;97(1):10–18. doi: 10.1016/0012-1606(83)90058-1. [DOI] [PubMed] [Google Scholar]
  18. Morrison-Graham K. An anatomical and electrophysiological study of synapse elimination at the developing frog neuromuscular junction. Dev Biol. 1983 Oct;99(2):298–311. doi: 10.1016/0012-1606(83)90279-8. [DOI] [PubMed] [Google Scholar]
  19. Nakajima Y., Kidokoro Y., Klier F. G. The development of functional neuromuscular junctions in vitro: an ultrastructural and physiological study. Dev Biol. 1980 Jun 1;77(1):52–72. doi: 10.1016/0012-1606(80)90456-x. [DOI] [PubMed] [Google Scholar]
  20. Peper K., Dreyer F., Sandri C., Akert K., Moor H. Structure and ultrastructure of the frog motor endplate. A freeze-etching study. Cell Tissue Res. 1974 Jun 24;149(4):437–455. doi: 10.1007/BF00223024. [DOI] [PubMed] [Google Scholar]
  21. Pumplin D. W. Normal variations in presynaptic active zones of frog neuromuscular junctions. J Neurocytol. 1983 Apr;12(2):317–323. doi: 10.1007/BF01148467. [DOI] [PubMed] [Google Scholar]
  22. Pumplin D. W., Reese T. S., Llinás R. Are the presynaptic membrane particles the calcium channels? Proc Natl Acad Sci U S A. 1981 Nov;78(11):7210–7213. doi: 10.1073/pnas.78.11.7210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rotshenker S., McMahan U. J. Altered patterns of innervation in frog muscle after denervation. J Neurocytol. 1976 Dec;5(6):719–730. doi: 10.1007/BF01181583. [DOI] [PubMed] [Google Scholar]
  24. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES