Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 May 1;98(5):1619–1629. doi: 10.1083/jcb.98.5.1619

Radioautographic visualization of differences in the pattern of [3H]uridine and [3H]orotic acid incorporation into the RNA of migrating columnar cells in the rat small intestine

PMCID: PMC2113200  PMID: 6202697

Abstract

The epithelium of rat small intestine was radioautographed to examine whether RNA is synthesized by the salvage pathway as shown after [3H]uridine injection or by the de novo pathway as shown after [3H]orotic acid injection. The two modes of RNA synthesis were thus investigated during the migration of columnar cells from crypt base to villus top, and the rate of synthesis was assessed by counting silver grains over the nucleolus and nucleoplasm at six levels along the duodenal epithelium--that is, in the base, mid, and top regions of the crypts and in the base, mid, and top regions of the villi. Concomitant biochemical analyses established that, after injection of either [5- 3H]uridine or [5-3H]orotic acid: (a) buffered glutaraldehyde fixative was as effective as perchloric acid or trichloracetic acid in insolubilizing the nucleic acids of rat small intestine; (b) a major fraction of the nucleic acid label was in RNA, that is, 91% after [3H]uridine and 72% after [3H]orotic acid, with the rest in DNA; and (c) a substantial fraction of the RNA label was in poly A+ RNA (presumed to be messenger RNA). In radioautographs of duodenum prepared after [3H] uridine injection, the count of silver grains was high over nucleolus and nucleoplasm in crypt base cells and gradually decreased at the upper levels up to the villus base. In the rest of the villus, the grain count over the nucleolus was negligible, while over the nucleoplasm it was low but significant. After [3H]-orotic acid injection, the number of silver grains over the nucleolus was negligible at all levels, whereas over the nucleoplasm the number was low in crypt cells, but high in villus cells with a peak in mid villus. The interpretation is that, except for a small amount of label incorporated into DNA from either precursor by crypt cells, the bulk of the label is incorporated into RNA as follows. In the crypts, cells make almost exclusive use of uridine, that is, of the salvage pathway, for the synthesis of ribosomal RNA in the nucleolus and of messenger and transfer RNA in the nucleoplasm. However, when cells pass from crypt to villus, they mainly utilize orotic acid--i.e., the de novo pathway--for the synthesis of messenger and transfer RNA within the nucleoplasm.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMANO M., LEBLOND C. P., NADLER N. J. RADIOAUTOGRAPHIC ANALYSIS OF NUCLEAR RNA IN MOUSE CELLS REVEALING THREE POOLS WITH DIFFERENT TURNOVER TIMES. Exp Cell Res. 1965 May;38:314–340. doi: 10.1016/0014-4827(65)90407-6. [DOI] [PubMed] [Google Scholar]
  2. Adamstone F. B., Taylor A. B. Nucleolar reorganization in epithelial cells of the jejunum of the rat. J Morphol. 1972 Feb;136(2):131–151. doi: 10.1002/jmor.1051360202. [DOI] [PubMed] [Google Scholar]
  3. Altmann G. G., Leblond C. P. Changes in the size and structure of the nucleolus of columnar cells during their migration from crypt base to villus top in rat jejunum. J Cell Sci. 1982 Aug;56:83–99. doi: 10.1242/jcs.56.1.83. [DOI] [PubMed] [Google Scholar]
  4. Archer S. J., Wust C. J. In vitro incorporation of orotic acid by spleen and liver cells of rats. Proc Soc Exp Biol Med. 1973 Jan;142(1):262–265. doi: 10.3181/00379727-142-37002. [DOI] [PubMed] [Google Scholar]
  5. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cairnie A. B., Bentley R. E. Cell proliferation studies in the intestinal epithelium of the rat. Hyperplasia during lactation. Exp Cell Res. 1967 May;46(2):428–440. doi: 10.1016/0014-4827(67)90079-1. [DOI] [PubMed] [Google Scholar]
  7. Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat. 1974 Dec;141(4):461–479. doi: 10.1002/aja.1001410403. [DOI] [PubMed] [Google Scholar]
  8. Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat. 1974 Dec;141(4):461–479. doi: 10.1002/aja.1001410403. [DOI] [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. Cortes P., Levin N. W., Dumler F., Venkatachalam K. K., Verghese C. P., Bernstein J. Incorporation of exogenous precursors into uridine nucleotides and ribonucleic acid. Nucleotide compartmentation in the renal cortex in vivo. Biochem J. 1979 Sep 15;182(3):677–686. doi: 10.1042/bj1820677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fakan S., Bernhard W. Localisation of rapidly and slowly labelled nuclear RNA as visualized by high resolution autoradiography. Exp Cell Res. 1971 Jul;67(1):129–141. doi: 10.1016/0014-4827(71)90628-8. [DOI] [PubMed] [Google Scholar]
  12. Fakan S., Puvion E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol. 1980;65:255–299. doi: 10.1016/s0074-7696(08)61962-2. [DOI] [PubMed] [Google Scholar]
  13. Fekete I. Effects of alloxan on orotic acid and glycogen content in various vertebrate species. Experientia. 1978 Jul 15;34(7):827–828. doi: 10.1007/BF01939643. [DOI] [PubMed] [Google Scholar]
  14. Gasser T., Moyer J. D., Handschumacher R. E. Novel single-pass exchange of circulating uridine in rat liver. Science. 1981 Aug 14;213(4509):777–778. doi: 10.1126/science.7256279. [DOI] [PubMed] [Google Scholar]
  15. Grummt I., Smith V. A., Grummt F. Amino acid starvation affects the initiation frequency of nucleolar RNA polymerase. Cell. 1976 Mar;7(3):439–445. doi: 10.1016/0092-8674(76)90174-4. [DOI] [PubMed] [Google Scholar]
  16. HAYHOE F. G., QUAGLINO D. AUTORADIOGRAPHIC INVESTIGATIONS OF RNA AND DNA METABOLISM OF HUMAN LEUCOCYTES CULTURED WITH PHYTOHAEMAGGLUTININ; URIDINE-5-3H AS A SPECIFIC PRECURSOR OF RNA. Nature. 1965 Jan 9;205:151–154. doi: 10.1038/205151a0. [DOI] [PubMed] [Google Scholar]
  17. Harkness R. A., Simmonds R. J., Gough P., Priscott P. K., Squire J. A. Purine base and nucleoside, cytidine and uridine concentrations in foetal calf and other sera [proceedings]. Biochem Soc Trans. 1980 Feb;8(1):139–139. doi: 10.1042/bst0080139. [DOI] [PubMed] [Google Scholar]
  18. Hatchwell L. C., Milner J. A. Factors affecting amino acid induced orotic aciduria in rats. J Nutr. 1978 Dec;108(12):1976–1981. doi: 10.1093/jn/108.12.1976. [DOI] [PubMed] [Google Scholar]
  19. Hauschka P. V. Analysis of nucleotide pools in animal cells. Methods Cell Biol. 1973;7:361–462. doi: 10.1016/s0091-679x(08)61787-2. [DOI] [PubMed] [Google Scholar]
  20. Jacob J. An electron microscope autoradiographic study of the site of initial synthesis of RNA in the nucleolus of Smittia. Exp Cell Res. 1967 Nov;48(2):276–282. doi: 10.1016/0014-4827(67)90353-9. [DOI] [PubMed] [Google Scholar]
  21. Jones M. E. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–279. doi: 10.1146/annurev.bi.49.070180.001345. [DOI] [PubMed] [Google Scholar]
  22. KESNER L. THE EFFECT OF AMMONIA ADMINISTRATION ON OROTIC ACID EXCRETION IN RATS. J Biol Chem. 1965 Apr;240:1722–1724. [PubMed] [Google Scholar]
  23. KOBATA A., SUZUOKI Z., KIDA M. The acid-soluble nucleotides of milk. I. Quantitative and qualitative differences of nucleotide constituents in human and cow's milk. J Biochem. 1962 Apr;51:277–287. doi: 10.1093/oxfordjournals.jbchem.a127533. [DOI] [PubMed] [Google Scholar]
  24. Karasaki S. The ultrastructure and RNA metabolism of nucleoli in early sea urchin embryos. Exp Cell Res. 1968 Sep;52(1):13–26. doi: 10.1016/0014-4827(68)90543-0. [DOI] [PubMed] [Google Scholar]
  25. Karle J. M., Anderson L. W., Erlichman C., Cysyk R. L. Serum uridine levels in patients receiving N-(phosphonacetyl)-L-aspartate. Cancer Res. 1980 Aug;40(8 Pt 1):2938–2940. [PubMed] [Google Scholar]
  26. Kopriwa B. M. A reliable, standardized method for ultrastructural electron microscopic radioautography. Histochemie. 1973 Oct 3;37(1):1–17. doi: 10.1007/BF00306855. [DOI] [PubMed] [Google Scholar]
  27. Kopriwa B. A comparison of various procedures for fine grain development in electron microscopic radioautography. Histochemistry. 1975 Aug 28;44(3):201–224. doi: 10.1007/BF00491492. [DOI] [PubMed] [Google Scholar]
  28. LEBLOND C. P., MESSIER B. Renewal of chief cells and goblet cells in the small intestine as shown by radioautography after injection of thymidine-H3 into mice. Anat Rec. 1958 Nov;132(3):247–259. doi: 10.1002/ar.1091320303. [DOI] [PubMed] [Google Scholar]
  29. LITTAU V. C., ALLFREY V. G., FRENSTER J. H., MIRSKY A. E. ACTIVE AND INACTIVE REGIONS OF NUCLEAR CHROMATIN AS REVEALED BY ELECTRON MICROSCOPE AUTORADIOGRAPHY. Proc Natl Acad Sci U S A. 1964 Jul;52:93–100. doi: 10.1073/pnas.52.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Langenburg W. G. Glutaraldehyde nonfixation of isolated viral and yeast RNAs. J Histochem Cytochem. 1980 Apr;28(4):311–315. doi: 10.1177/28.4.6768793. [DOI] [PubMed] [Google Scholar]
  31. Leblond C. P. The life history of cells in renewing systems. Am J Anat. 1981 Feb;160(2):114–158. doi: 10.1002/aja.1001600202. [DOI] [PubMed] [Google Scholar]
  32. Lewan L., Petersen I., Yngner T. Incorporation of orotic acid into nucleotides and RNA in mouse organs during 60 minutes. Hoppe Seylers Z Physiol Chem. 1975 Apr;356(4):425–429. doi: 10.1515/bchm2.1975.356.1.425. [DOI] [PubMed] [Google Scholar]
  33. Martínez-Ramón A., Grisolía S. Increased incorporation of aspartate and decreased incorporation of orotate in fibroblasts from Lesch-Nyhan patients as revealed by autoradiography. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1011–1016. doi: 10.1016/0006-291x(80)90053-4. [DOI] [PubMed] [Google Scholar]
  34. Mirre C., Stahl A. Ultrastructural organization, sites of transcription and distribution of fibrillar centres in the nucleolus of the mouse oocyte. J Cell Sci. 1981 Apr;48:105–126. doi: 10.1242/jcs.48.1.105. [DOI] [PubMed] [Google Scholar]
  35. Morrison A., Porteous J. W. Changes in the synthesis of ribosomal ribonucleic acid and of poly(A)-containing ribonucleic acid during the differentiation of intestinal epithelial cells in the rat and in the chick. Biochem J. 1980 Jun 15;188(3):609–618. doi: 10.1042/bj1880609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Moyer J. D., Oliver J. T., Handschumacher R. E. Salvage of circulating pyrimidine nucleosides in the rat. Cancer Res. 1981 Aug;41(8):3010–3017. [PubMed] [Google Scholar]
  37. Munro H. N., Fleck A. Recent developments in the measurement of nucleic acids in biological materials. A supplementary review. Analyst. 1966 Feb;91(79):78–88. doi: 10.1039/an9669100078. [DOI] [PubMed] [Google Scholar]
  38. Noorduyn N. J., de Man J. C. RNA synthesis in rat and mouse hepatic cells as studied with light and electron microscope radioautography. J Cell Biol. 1966 Sep;30(3):655–660. doi: 10.1083/jcb.30.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nordström C., Dahlqvist A., Josefsson L. Quantitative determination of enzymes in different parts of the villi and crypts of rat small intestine. Comparison of alkaline phosphatase, disaccharidases and dipepeptidases. J Histochem Cytochem. 1967 Dec;15(12):713–721. doi: 10.1177/15.12.713. [DOI] [PubMed] [Google Scholar]
  40. Okonkwo P. O., Kinsella J. E. Orotic acid in food milk powders. Am J Clin Nutr. 1969 May;22(5):532–534. doi: 10.1093/ajcn/22.5.532. [DOI] [PubMed] [Google Scholar]
  41. Ord M. G., Stocken L. A. Uptake of orotate and thymidine by normal and regenerating rat livers. Biochem J. 1973 Jan;132(1):47–54. doi: 10.1042/bj1320047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Patterson C. M., Kruger B. J. An autoradiographic study of the effect of a range of fluoride doses on the utilization of (3-H)-orotate by ameloblasts in the rat. Arch Oral Biol. 1975 Feb;20(2):149–151. doi: 10.1016/0003-9969(75)90172-7. [DOI] [PubMed] [Google Scholar]
  43. Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
  44. Perry R. P. RNA processing comes of age. J Cell Biol. 1981 Dec;91(3 Pt 2):28s–38s. doi: 10.1083/jcb.91.3.28s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Perry R. P. THE CELLULAR SITES OF SYNTHESIS OF RIBOSOMAL AND 4S RNA. Proc Natl Acad Sci U S A. 1962 Dec;48(12):2179–2186. doi: 10.1073/pnas.48.12.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Plagemann P. G., Marz R., Wohlhueter R. M. Uridine transport in Novikoff rat hepatoma cells and other cell lines and its relationship to uridine phosphorylation and phosphorolysis. J Cell Physiol. 1978 Oct;97(1):49–72. doi: 10.1002/jcp.1040970107. [DOI] [PubMed] [Google Scholar]
  47. ROSENBLOOM F. M., SEEGMILLER J. E. AN ENZYMATIC SPECTROPHOTOMETRIC METHOD FOR DETERMINATION OF OROTIC ACID. J Lab Clin Med. 1964 Mar;63:492–500. [PubMed] [Google Scholar]
  48. Rachubinski R. A., Verma D. P., Bergeron J. J. Synthesis of rat liver microsomal cytochrome b5 by free ribosomes. J Cell Biol. 1980 Mar;84(3):705–716. doi: 10.1083/jcb.84.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Raisonnier A., Bouma M. E., Salvat C., Infante R. Metabolism of orotic acid: lack of orotate phosphoribosyltransferase in rat intestinal mucosa. Eur J Biochem. 1981 Sep 1;118(3):565–569. doi: 10.1111/j.1432-1033.1981.tb05556.x. [DOI] [PubMed] [Google Scholar]
  50. Rapaport E., Zamecnik P. C. Incorporation of adenosine into ATP: formation of compartmentalized ATP. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3122–3125. doi: 10.1073/pnas.73.9.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rustum Y. M. High-pressure liquid chromatography. I. Quantitative separation of purine and pyrimidine nucleosides and bases. Anal Biochem. 1978 Oct 1;90(1):289–299. doi: 10.1016/0003-2697(78)90033-7. [DOI] [PubMed] [Google Scholar]
  52. SHORTER R. G., CREAMER B. Ribonucleic acid and protein metabolism in the gut. I. Observations in gastro-intestinal cells with rapid turnover. Gut. 1962 Jun;3:118–128. doi: 10.1136/gut.3.2.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. SMITH L. H., Jr, BAKER F. A. Pyrimidine metabolism in man. I. The biosynthesis of orotic acid. J Clin Invest. 1959 May;38(5):798–809. doi: 10.1172/JCI103862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Shafritz D. A., Senior J. R. Synthesis of pyrimidine nucleotide precursors in human and rat small intestinal mucosa. Biochim Biophys Acta. 1967 Jul 25;141(2):332–341. doi: 10.1016/0304-4165(67)90107-9. [DOI] [PubMed] [Google Scholar]
  55. Simmonds H. A., Potter C. F., Sahota A., Cameron J. S., Webster D. R., Becroft D. M. Absence of oroticaciduria in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. Clin Exp Immunol. 1978 Oct;34(1):42–45. [PMC free article] [PubMed] [Google Scholar]
  56. Snyderman S. E., Sansaricq C., Chen W. J., Norton P. M., Phansalkar S. V. Argininemia. J Pediatr. 1977 Apr;90(4):563–568. doi: 10.1016/s0022-3476(77)80367-3. [DOI] [PubMed] [Google Scholar]
  57. Tax W. J., Veerkamp J. H., Schretlen E. D. The urinary excretion of orotic acid and orotidine, measured by an isotope dilution assay. Clin Chim Acta. 1978 Dec 15;90(3):217–223. doi: 10.1016/0009-8981(78)90260-7. [DOI] [PubMed] [Google Scholar]
  58. Tres L. L. Nucleolar RNA synthesis of meiotic prophase spermatocytes in the human testis. Chromosoma. 1975 Nov 24;53(2):141–151. doi: 10.1007/BF00333042. [DOI] [PubMed] [Google Scholar]
  59. Tseng J., Barelkovski J., Gurpide E. Rates of formation of blood-borne uridine and cytidine in dogs. Am J Physiol. 1971 Sep;221(3):869–878. doi: 10.1152/ajplegacy.1971.221.3.869. [DOI] [PubMed] [Google Scholar]
  60. Weinberg R. A., Loening U., Willems M., Penman S. Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1088–1095. doi: 10.1073/pnas.58.3.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wiegers U., Kramer G., Klapproth K., Hilz H. Separate pyrimidine-nucleotide pools for messenger-RNA and ribosomal-RNA synthesis in HeLa S3 cells. Eur J Biochem. 1976 May 1;64(2):535–540. doi: 10.1111/j.1432-1033.1976.tb10333.x. [DOI] [PubMed] [Google Scholar]
  62. Witschi H. A comparative study of in vivo RNA and protein synthesis in rat liver and lung. Cancer Res. 1972 Aug;32(8):1686–1694. [PubMed] [Google Scholar]
  63. Wohlhueter R. M., McIvor R. S., Plagemann P. G. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J Cell Physiol. 1980 Sep;104(3):309–319. doi: 10.1002/jcp.1041040305. [DOI] [PubMed] [Google Scholar]
  64. Zardi L., Baserga R. Ribosomal RNA synthesis in WI-38 cells stimulated to proliferate. Exp Mol Pathol. 1974 Feb;20(1):69–77. doi: 10.1016/0014-4800(74)90044-6. [DOI] [PubMed] [Google Scholar]
  65. van Dongen J. M., Visser W. J., Daems W. T., Galjaard H. The relation between cell proliferation, differentiation and ultrastructural development in rat intestinal epithelium. Cell Tissue Res. 1976 Oct 29;174(2):183–199. doi: 10.1007/BF00222158. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES