Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Apr 1;98(4):1481–1487. doi: 10.1083/jcb.98.4.1481

Disassembly and reconstitution of a membrane-microtubule complex

PMCID: PMC2113207  PMID: 6715410

Abstract

The cell membrane of the unicellular algae Distigma proteus is associated with arrays of parallel microtubules. Fragments of the membrane-microtubule complex have been isolated and partially purified. The microtubules were stable in vitro at room temperature as well as at 0 degree C, but were specifically and rapidly disassembled by Ca2+. After removal of all endogenous microtubules, the membrane-microtubule complex could be reassembled from brain microtubule protein and denuded Distigma membrane fragments. The readded microtubules bound in a fixed orientation, and only to those regions of membrane that are normally associated with microtubules in vivo.

Full Text

The Full Text of this article is available as a PDF (892.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Clark J. I. Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4976–4980. doi: 10.1073/pnas.72.12.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binder L. I., Rosenbaum J. L. The in vitro assembly of flagellar outer doublet tubulin. J Cell Biol. 1978 Nov;79(2 Pt 1):500–515. doi: 10.1083/jcb.79.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bürk R. R., Eschenbruch M., Leuthard P., Steck G. Sensitive detection of proteins and peptides in polyacrylamide gels after formaldehyde fixation. Methods Enzymol. 1983;91:247–254. doi: 10.1016/s0076-6879(83)91021-2. [DOI] [PubMed] [Google Scholar]
  4. Feit H., Barondes S. H. Colchicine-binding activity in particulate fractions of mouse brain. J Neurochem. 1970 Sep;17(9):1355–1364. doi: 10.1111/j.1471-4159.1970.tb06870.x. [DOI] [PubMed] [Google Scholar]
  5. Heidemann S. R., McIntosh J. R. Visualization of the structural polarity of microtubules. Nature. 1980 Jul 31;286(5772):517–519. doi: 10.1038/286517a0. [DOI] [PubMed] [Google Scholar]
  6. Hofmann C., Bouck G. B. Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules. J Cell Biol. 1976 Jun;69(3):693–715. doi: 10.1083/jcb.69.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Job D., Rauch C. T., Fischer E. H., Margolis R. L. Regulation of microtubule cold stability by calmodulin-dependent and -independent phosphorylation. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3894–3898. doi: 10.1073/pnas.80.13.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Murphy D. B., Hiebsch R. R. Purification of microtubule protein from beef brain and comparison of the assembly requirements for neuronal microtubules isolated from beef and hog. Anal Biochem. 1979 Jul 1;96(1):225–235. doi: 10.1016/0003-2697(79)90577-3. [DOI] [PubMed] [Google Scholar]
  10. Murray J. M. Control of cell shape by calcium in the euglenophyceae. J Cell Sci. 1981 Jun;49:99–117. doi: 10.1242/jcs.49.1.99. [DOI] [PubMed] [Google Scholar]
  11. Murray J. M. Three-dimensional structure of a membrane-microtubule complex. J Cell Biol. 1984 Jan;98(1):283–295. doi: 10.1083/jcb.98.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SOMMER J. R. THE ULTRASTRUCTURE OF THE PELLICLE COMPLEX OF EUGLENA GRACILIS. J Cell Biol. 1965 Feb;24:253–257. doi: 10.1083/jcb.24.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith D. S., Järlfors U., Beránek R. The organization of synaptic axcplasm in the lamprey (petromyzon marinus) central nervous system. J Cell Biol. 1970 Aug;46(2):199–219. doi: 10.1083/jcb.46.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  17. Steiner M. Membrane-bound tubulin in human platelets. Biochim Biophys Acta. 1983 Mar 23;729(1):17–22. doi: 10.1016/0005-2736(83)90450-9. [DOI] [PubMed] [Google Scholar]
  18. Stephens R. E. Reconstitution of ciliary membranes containing tubulin. J Cell Biol. 1983 Jan;96(1):68–75. doi: 10.1083/jcb.96.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weatherbee J. A. Membranes and cell movement: interactions of membranes with the proteins of the cytoskeleton. Int Rev Cytol Suppl. 1981;12:113–176. doi: 10.1016/b978-0-12-364373-5.50014-7. [DOI] [PubMed] [Google Scholar]
  20. Weihing R. R. The cytoskeleton and plasma membrane. Methods Achiev Exp Pathol. 1979;8:42–109. [PubMed] [Google Scholar]
  21. Westrum L. E., Gray E. G. Microtubules associated with postsynaptic 'thickenings'. J Neurocytol. 1977 Oct;6(5):505–518. doi: 10.1007/BF01205216. [DOI] [PubMed] [Google Scholar]
  22. Zisapel N., Levi M., Gozes I. Tubulin: an integral protein of mammalian synaptic vesicle membranes. J Neurochem. 1980 Jan;34(1):26–32. doi: 10.1111/j.1471-4159.1980.tb04617.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES