Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Apr 1;98(4):1178–1184. doi: 10.1083/jcb.98.4.1178

Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei

PMCID: PMC2113209  PMID: 6715405

Abstract

Trypanosoma brucei glycosomes (microbodies containing nine enzymes involved in glycolysis) have been purified to near homogeneity from bloodstream-form trypomastigotes for the purpose of morphologic and biochemical analysis. Differential centrifugation followed by two isopycnic centrifugations in an isotonic Percoll and in a sucrose gradient, respectively, resulted in 12- to 13-fold purified glycosomes with an overall yield of 31%. These glycosomes appeared to be highly pure and contained less than 1% mitochondrial contamination as judged by morphometric and biochemical analyses. In intact cells, glycosomes displayed a remarkably homogeneous size distribution centered on an average diameter of 0.27 micron with a standard deviation of 0.03 micron. The size distribution of isolated glycosomes differed only slightly from that measured in intact cells. One T. brucei cell contained on average 230 glycosomes, representing 4.3% of the total cell volume. The glycosomes were surrounded by a single membrane and contained as phospholipids only phosphatidyl choline and phosphatidyl ethanolamine in a ratio of 2:1. The purified glycosomal fraction had a very low DNA content of 0.18 microgram/mg protein. No DNA molecules were observed that could not have been derived from contaminating mitochondrial or nuclear debris.

Full Text

The Full Text of this article is available as a PDF (866.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudhuin P., Evrard P., Berthet J. Electron microscopic examination of subcellular fractions. I. The preparation of representative samples from suspensions of particles. J Cell Biol. 1967 Jan;32(1):181–191. doi: 10.1083/jcb.32.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baudhuin P., Leroy-Houyet M. A., Quintart J., Berthet P. Application of cluster analysis for characterization of spatial distribution of particles by stereological methods. J Microsc. 1979 Jan;115(1):1–17. doi: 10.1111/j.1365-2818.1979.tb00148.x. [DOI] [PubMed] [Google Scholar]
  3. Borst P., van der Ploeg M., van Hoek J. F., Tas J., James J. On the DNA content and ploidy of trypanosomes. Mol Biochem Parasitol. 1982 Jul;6(1):13–23. doi: 10.1016/0166-6851(82)90049-4. [DOI] [PubMed] [Google Scholar]
  4. Brunk C. F., Jones K. C., James T. W. Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem. 1979 Jan 15;92(2):497–500. doi: 10.1016/0003-2697(79)90690-0. [DOI] [PubMed] [Google Scholar]
  5. Cannata J. J., Valle E., Docampo R., Cazzulo J. J. Subcellular localization of phosphoenolpyruvate carboxykinase in the trypanosomatids Trypanosoma cruzi and Crithidia fasciculata. Mol Biochem Parasitol. 1982 Sep;6(3):151–160. doi: 10.1016/0166-6851(82)90074-3. [DOI] [PubMed] [Google Scholar]
  6. Coombs G. H., Craft J. A., Hart D. T. A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Mol Biochem Parasitol. 1982 Mar;5(3):199–211. doi: 10.1016/0166-6851(82)90021-4. [DOI] [PubMed] [Google Scholar]
  7. Damper D., Patton C. L. Pentamidine transport and sensitivity in brucei-group trypanosomes. J Protozool. 1976 May;23(2):349–356. doi: 10.1111/j.1550-7408.1976.tb03787.x. [DOI] [PubMed] [Google Scholar]
  8. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  9. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  10. Fairlamb A. H., Weislogel P. O., Hoeijmakers J. H., Borst P. Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei. J Cell Biol. 1978 Feb;76(2):293–309. doi: 10.1083/jcb.76.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujiki Y., Fowler S., Shio H., Hubbard A. L., Lazarow P. B. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mitochondrial membranes. J Cell Biol. 1982 Apr;93(1):103–110. doi: 10.1083/jcb.93.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammond D. J., Gutteridge W. E., Opperdoes F. R. A novel location for two enzymes of de novo pyrimidine biosynthesis in trypanosomes and Leishmania. FEBS Lett. 1981 Jun 1;128(1):27–29. doi: 10.1016/0014-5793(81)81070-8. [DOI] [PubMed] [Google Scholar]
  14. Kamiryo T., Abe M., Okazaki K., Kato S., Shimamoto N. Absence of DNA in peroxisomes of Candida tropicalis. J Bacteriol. 1982 Oct;152(1):269–274. doi: 10.1128/jb.152.1.269-274.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lanham S. M. Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers. Nature. 1968 Jun 29;218(5148):1273–1274. doi: 10.1038/2181273a0. [DOI] [PubMed] [Google Scholar]
  16. Leighton F., Brandan E., Lazo O., Bronfman M. Subcellular fractionation studies on the organization of fatty acid oxidation by liver peroxisomes. Ann N Y Acad Sci. 1982;386:62–80. doi: 10.1111/j.1749-6632.1982.tb21408.x. [DOI] [PubMed] [Google Scholar]
  17. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGhee R. B., Cosgrove W. B. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 1980 Mar;44(1):140–173. doi: 10.1128/mr.44.1.140-173.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mukkada A. J. Tricarboxylic acid and glyoxylate cycles in the Leishmaniae. Acta Trop. 1977 Jun;34(2):167–175. [PubMed] [Google Scholar]
  20. Müller M. Biochemistry of protozoan microbodies: peroxisomes, alpha-glycerophosphate oxidase bodies, hydrogenosomes. Annu Rev Microbiol. 1975;29:467–483. doi: 10.1146/annurev.mi.29.100175.002343. [DOI] [PubMed] [Google Scholar]
  21. Opperdoes F. R. A rapid method for the isolation of intact glycosomes from Trypanosoma brucei by Percoll -gradient centrifugation in a vertical rotor. Mol Biochem Parasitol. 1981 Jul;3(3):181–186. doi: 10.1016/0166-6851(81)90048-7. [DOI] [PubMed] [Google Scholar]
  22. Opperdoes F. R., Aarsen P. N., van der Meer C., Borst P. Trypanosoma brucei: an evaluation of salicylhydroxamic acid as a trypanocidal drug. Exp Parasitol. 1976 Oct;40(2):198–205. doi: 10.1016/0014-4894(76)90082-5. [DOI] [PubMed] [Google Scholar]
  23. Opperdoes F. R., Borst P., Bakker S., Leene W. Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD+-linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form to Trypanosoma brucei. Eur J Biochem. 1977 Jun 1;76(1):29–39. doi: 10.1111/j.1432-1033.1977.tb11567.x. [DOI] [PubMed] [Google Scholar]
  24. Opperdoes F. R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 1977 Aug 15;80(2):360–364. doi: 10.1016/0014-5793(77)80476-6. [DOI] [PubMed] [Google Scholar]
  25. Opperdoes F. R., Borst P., Spits H. Particle-bound enzymes in the bloodstream form of Trypanosoma brucei. Eur J Biochem. 1977 Jun 1;76(1):21–28. doi: 10.1111/j.1432-1033.1977.tb11566.x. [DOI] [PubMed] [Google Scholar]
  26. Opperdoes F. R., Borst P., de Rijke D. Oligomycin sensitivity of the mitochondrial ATPase as a marker for fly transmissability and the presence of functional kinetoplast DNA in African trypanosomes. Comp Biochem Physiol B. 1976;55(1):25–30. doi: 10.1016/0305-0491(76)90167-x. [DOI] [PubMed] [Google Scholar]
  27. Opperdoes F. R., Cottem D. Involvement of the glycosome of Trypanosoma brucei in carbon dioxide fixation. FEBS Lett. 1982 Jun 21;143(1):60–64. doi: 10.1016/0014-5793(82)80270-6. [DOI] [PubMed] [Google Scholar]
  28. Opperdoes F. R., Markoŝ A., Steiger R. F. Localization of malate dehydrogenase, adenylate kinase and glycolytic enzymes in glycosomes and the threonine pathway in the mitochondrion of cultured procyclic trypomastigotes of Trypanosoma brucei. Mol Biochem Parasitol. 1981 Dec 31;4(5-6):291–309. doi: 10.1016/0166-6851(81)90062-1. [DOI] [PubMed] [Google Scholar]
  29. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Souto-Padrón T., de Souza W. Fine structure and cytochemistry of peroxisomes (microbodies) Leptomonas samueli. Cell Tissue Res. 1982;222(1):153–158. doi: 10.1007/BF00218295. [DOI] [PubMed] [Google Scholar]
  31. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  32. Stein S., Böhlen P., Stone J., Dairman W., Udenfriend S. Amino acid analysis with fluorescamine at the picomole level. Arch Biochem Biophys. 1973 Mar;155(1):202–212. doi: 10.1016/s0003-9861(73)80022-0. [DOI] [PubMed] [Google Scholar]
  33. Taylor M. B., Berghausen H., Heyworth P., Messenger N., Rees L. J., Gutteridge W. E. Subcellular localization of some glycolytic enzymes in parasitic flagellated protozoa. Int J Biochem. 1980;11(2):117–120. doi: 10.1016/0020-711x(80)90243-8. [DOI] [PubMed] [Google Scholar]
  34. Toner J. J., Weber M. M. Respiratory control in mitochondria from Crithidia fasciculata. Biochem Biophys Res Commun. 1972 Jan 31;46(2):652–660. doi: 10.1016/s0006-291x(72)80190-6. [DOI] [PubMed] [Google Scholar]
  35. Van Hoof F., Hue L., Sherratt H. S. Protection of rats against hypoglycin and pent-4-enoate toxicity by pretreatment with clofibrate [proceedings]. Biochem Soc Trans. 1979 Feb;7(1):163–165. doi: 10.1042/bst0070163. [DOI] [PubMed] [Google Scholar]
  36. Visser N., Opperdoes F. R. Glycolysis in Trypanosoma brucei. Eur J Biochem. 1980 Feb;103(3):623–632. doi: 10.1111/j.1432-1033.1980.tb05988.x. [DOI] [PubMed] [Google Scholar]
  37. de Duve C. Peroxisomes and related particles in historical perspective. Ann N Y Acad Sci. 1982;386:1–4. doi: 10.1111/j.1749-6632.1982.tb21402.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES