Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Apr 1;98(4):1342–1347. doi: 10.1083/jcb.98.4.1342

Biochemical analysis of mutants of a macrophage cell line resistant to the growth-inhibitory activity of interferon

PMCID: PMC2113213  PMID: 6325469

Abstract

While a multiplicity of cellular and biochemical effects are mediated by interferons on cultured cells, the mechanisms involved in the direct growth-inhibitory activity of interferons remain problematic. We have previously found that variants in cAMP metabolism in a macrophage cell line, J774.2, were at least 50-fold less sensitive to the growth inhibitory activity of interferons (IFN) than the parental clone. To test the hypothesis that cAMP mediates the growth inhibition produced by IFN in these cells, interferon-resistant variants were selected and characterized with respect to cAMP synthesis and function. Approximately one-third of the IFN-resistant clones were found to be resistant to growth inhibition produced by cholera toxin, but not 8Br- cAMP. IFN was fully able to protect all of the interferon- resistant/choleratoxin-resistant (IFNr/CTr) clones against infection by vesicular stomatitis virus and markedly stimulated 2', 5'-oligodenylate synthetase activity. These IFNr/CTr variants were shown to have a defect in adenylate cyclase. The remaining IFN-resistant clones were fully susceptible to the growth-inhibitory effects of cholera toxin because their basal and stimulated adenylate cyclase activity is similar to that of the parental clone. IFN failed to protect these IFNr/choleratoxin sensitive clones against infection by vesicular stomatitis virus and failed to stimulate 2', 5-oligodenylate synthetase, suggesting that they have defective or deficient IFN receptors. In addition, IFN failed to increase intracellular cAMP levels in both IFNr/CTr and IFNr/choleratoxin sensitive clones. These results provide firm genetic and biochemical evidence that the growth inhibitory effects of IFN on this cell line are mediated by cAMP.

Full Text

The Full Text of this article is available as a PDF (625.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguet M. High-affinity binding of 125I-labelled mouse interferon to a specific cell surface receptor. Nature. 1980 Apr 3;284(5755):459–461. doi: 10.1038/284459a0. [DOI] [PubMed] [Google Scholar]
  2. Blalock J. E., Georgiades J. A., Langford M. P., Johnson H. M. Purified human immune interferon has more potent anticellular activity than fibroblast or leukocyte interferon. Cell Immunol. 1980 Feb;49(2):390–394. doi: 10.1016/0008-8749(80)90041-6. [DOI] [PubMed] [Google Scholar]
  3. Bloom B. R., Diamond B., Muschel R., Rosen N., Schneck J., Damiani G., Rosen O., Scharff M. Genetic approaches to the mechanism of macrophage functions. Fed Proc. 1978 Nov;37(13):2765–2771. [PubMed] [Google Scholar]
  4. Bourne H. R., Coffino P., Tomkins G. M. Somatic genetic analysis of cyclic AMP action: characterization of unresponsive mutants. J Cell Physiol. 1975 Jun;85(3):611–620. doi: 10.1002/jcp.1040850313. [DOI] [PubMed] [Google Scholar]
  5. Burke D. C., Graham C. F., Lehman J. M. Appearance of interferon inducibility and sensitivity during differentiation of murine teratocarcinoma cells in vitro. Cell. 1978 Feb;13(2):243–248. doi: 10.1016/0092-8674(78)90193-9. [DOI] [PubMed] [Google Scholar]
  6. Evain D., Gottesman M., Pastan I., Anderson W. B. A mutation affecting the catalytic subunit of cyclic AMP-dependent protein kinase in CHO cells. J Biol Chem. 1979 Aug 10;254(15):6931–6937. [PubMed] [Google Scholar]
  7. Farrell P. J., Sen G. C., Dubois M. F., Ratner L., Slattery E., Lengyel P. Interferon action: two distinct pathways for inhibition of protein synthesis by double-stranded RNA. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5893–5897. doi: 10.1073/pnas.75.12.5893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuse T. K., Morinaga N. Effects of interferon on cell and virus growth in transformed human cell lines. J Gen Virol. 1976 Oct;33(1):7–15. doi: 10.1099/0022-1317-33-1-7. [DOI] [PubMed] [Google Scholar]
  9. GRESSER I. Metamorphosis of human amnion cells induced by preparations of interferon. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1817–1822. doi: 10.1073/pnas.47.11.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gresser I., Bandu M. T., Brouty-Boyé D. Interferon and cell division. IX. Interferon-resistant L1210 cells: characteristics and origin. J Natl Cancer Inst. 1974 Feb;52(2):553–559. doi: 10.1093/jnci/52.2.553. [DOI] [PubMed] [Google Scholar]
  12. Gresser I., Brouty-Boyé D., Thomas M. T., Macieira-Coelho A. Interferon and cell division. I. Inhibition of the multiplication of mouse leukemia L 1210 cells in vitro by interferon preparations. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1052–1058. doi: 10.1073/pnas.66.4.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gupta S. L., Rubin B. Y., Holmes S. L. Regulation of interferon action in human fibroblasts: transient induction of specific proteins and amplification of the antiviral response by antinomycin D. Virology. 1981 Jun;111(2):331–340. doi: 10.1016/0042-6822(81)90337-8. [DOI] [PubMed] [Google Scholar]
  14. Hamburg S. I., Fleit H. B., Unkeless J. C., Rabinovitch M. Mononuclear phagocytes: responders to and producers of interferon. Ann N Y Acad Sci. 1980;350:72–90. doi: 10.1111/j.1749-6632.1980.tb20609.x. [DOI] [PubMed] [Google Scholar]
  15. Kerr I. M., Brown R. E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):256–260. doi: 10.1073/pnas.75.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knight E., Jr Antiviral and cell growth inhibitory activities reside in the same glycoprotein of human fibroblast interferon. Nature. 1976 Jul 22;262(5566):302–303. doi: 10.1038/262302a0. [DOI] [PubMed] [Google Scholar]
  17. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Muschel R. J., Rosen N., Bloom B. R. Isolation of variants in phagocytosis of a macrophage-like continuous cell line. J Exp Med. 1977 Jan 1;145(1):175–186. doi: 10.1084/jem.145.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  21. PAUCKER K., CANTELL K., HENLE W. Quantitative studies on viral interference in suspended L cells. III. Effect of interfering viruses and interferon on the growth rate of cells. Virology. 1962 Jun;17:324–334. doi: 10.1016/0042-6822(62)90123-x. [DOI] [PubMed] [Google Scholar]
  22. Ralph P., Prichard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol. 1975 Feb;114(2 Pt 2):898–905. [PubMed] [Google Scholar]
  23. Rosen N., Piscitello J., Schneck J., Muschel R. J., Bloom B. R., Rosen O. M. Properties of protein kinase and adenylate cyclase-deficient variants of a macrophage-like cell line. J Cell Physiol. 1979 Jan;98(1):125–136. doi: 10.1002/jcp.1040980114. [DOI] [PubMed] [Google Scholar]
  24. Rosen N., Schneck J., Bloom B. R., Rosen O. M. Inhibition of plasminogen activator secretion by cyclic AMP in a macrophage-like cell line. J Cyclic Nucleotide Res. 1978 Oct;4(5):345–358. [PubMed] [Google Scholar]
  25. Rubin B. Y., Gupta S. L. Differential efficacies of human type I and type II interferons as antiviral and antiproliferative agents. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5928–5932. doi: 10.1073/pnas.77.10.5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  27. Schneck J., Rager-Zisman B., Rosen O. M., Bloom B. R. Genetic analysis of the role of cAMP in mediating effects of interferon. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1879–1883. doi: 10.1073/pnas.79.6.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Silverman R. H., Watling D., Balkwill F. R., Trowsdale J., Kerr I. M. The ppp(A2'p)nA and protein kinase systems in wild-type and interferon-resistant Daudi cells. Eur J Biochem. 1982 Aug;126(2):333–341. doi: 10.1111/j.1432-1033.1982.tb06783.x. [DOI] [PubMed] [Google Scholar]
  29. Tovey M. G., Brouty-Boyé D. The use of the chemostat to study the relationship between cell growth rate, viability, and the effect of interferon on L 1210 cells. Exp Cell Res. 1979 Feb;118(2):383–388. doi: 10.1016/0014-4827(79)90162-9. [DOI] [PubMed] [Google Scholar]
  30. Tovey M. G., Rochette-Egly C., Castagna M. Effect of interferon on concentrations of cyclic nucleotides in cultured cells. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3890–3893. doi: 10.1073/pnas.76.8.3890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vandenbussche P., Content J., Lebleu B., Werenne J. Comparison of interferon action in interferon resistant and sensitive L1210 cells. J Gen Virol. 1978 Oct;41(1):161–166. doi: 10.1099/0022-1317-41-1-161. [DOI] [PubMed] [Google Scholar]
  32. Vandenbussche P., Divizia M., Verhaegen-Lewalle M., Fuse A., Kuwata T., De Clercq E., Content J. Enzymatic activities induced by interferon in human fibroblast cell lines differing in their sensitivity to the anticellular activity of interferon. Virology. 1981 May;111(1):11–22. doi: 10.1016/0042-6822(81)90649-8. [DOI] [PubMed] [Google Scholar]
  33. Vassef A., Beaud G., Paucker K., Lengyel P. Interferon assay based on the inhibition of double-stranded reovirus RNA accumulation in mouse L cells. J Gen Virol. 1973 Apr;19(1):81–87. doi: 10.1099/0022-1317-19-1-81. [DOI] [PubMed] [Google Scholar]
  34. Verhaegen M., Divizia M., Vandenbussche P., Kuwata T., Content J. Abnormal behavior of interferon-induced enzymatic activities in an interferon-resistant cell line. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4479–4483. doi: 10.1073/pnas.77.8.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vogel S. N., Weedon L. L., Moore R. N., Rosenstreich D. L. Correction of defective macrophage differentiation in C3H/HeJ mice by an interferon-like molecule. J Immunol. 1982 Jan;128(1):380–387. [PubMed] [Google Scholar]
  36. Wood J. N., Hovanessian A. G. Interferon enhances 2-5A synthetase in embryonal carcinoma cells. Nature. 1979 Nov 1;282(5734):74–76. doi: 10.1038/282074a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES