Abstract
Intramembrane particles (IMPs) of the plasmalemma of mature, synapsing neurons are evenly distributed along the axon shaft. In contrast, IMPs of growing olfactory axons form density gradients: IMP density decreases with increasing distance from the perikarya, with a slope that depends upon IMP size (Small, R., and K. H. Pfenninger, 1984, J. Cell Biol., 98: 1422-1433). These IMP density gradients resemble Gaussian tails, but they are much more accurately described by the equations formulated for diffusion in a system with a moving boundary (a Stefan Problem), using constants that are dependent upon IMP size. The resulting model predicts a shallow, nearly linear IMP density profile at early stages of growth. Later, this profile becomes gradually transformed into a steep nonlinear gradient as axon elongation proceeds. This prediction is borne out by the experimental evidence. The diffusion coefficients calculated from this model range from 0.5 to 1.8 X 10(-7) cm2/s for IMPs between 14.8 and 3.6 nm, respectively. These diffusion coefficients are linearly dependent upon the inverse IMP diameter in accordance with the Stokes-Einstein relationship. The measured viscosity is approximately 7 centipoise. Our findings indicate (a) that most IMPs in growing axons reach distal locations by lateral diffusion in the plasma membrane, (b) that IMPs-- or complexes of integral membrane proteins--can diffuse at considerably higher rates than previously reported for iso-concentration systems, and (c) that the laws of diffusion determined for macroscopic systems are applicable to the submicroscopic membrane system.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Besharse J. C., Pfenninger K. H. Membrane assembly in retinal photoreceptors I. Freeze-fracture analysis of cytoplasmic vesicles in relationship to disc assembly. J Cell Biol. 1980 Nov;87(2 Pt 1):451–463. doi: 10.1083/jcb.87.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blank M., Britten J. S. Transport properties of condensed monolayers. J Colloid Sci. 1965 Oct;20(8):789–800. doi: 10.1016/0095-8522(65)90053-x. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
- Chang C. H., Takeuchi H., Ito T., Machida K., Ohnishi S. Lateral mobility of erythrocyte membrane proteins studied by the fluorescence photobleaching recovery technique. J Biochem. 1981 Oct;90(4):997–1004. doi: 10.1093/oxfordjournals.jbchem.a133586. [DOI] [PubMed] [Google Scholar]
- Cherry R. J. Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta. 1979 Dec 20;559(4):289–327. doi: 10.1016/0304-4157(79)90009-1. [DOI] [PubMed] [Google Scholar]
- Edidin M., Fambrough D. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens. J Cell Biol. 1973 Apr;57(1):27–37. doi: 10.1083/jcb.57.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edidin M. Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng. 1974;3(0):179–201. doi: 10.1146/annurev.bb.03.060174.001143. [DOI] [PubMed] [Google Scholar]
- Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
- Graziadei P. P., DeHan R. S. Neuronal regeneration in frog olfactory system. J Cell Biol. 1973 Nov;59(2 Pt 1):525–530. doi: 10.1083/jcb.59.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson K., Elson E., Koppel D., Webb W. Fluorescence photobleaching in cell biology. Nature. 1982 Jan 28;295(5847):283–284. doi: 10.1038/295283a0. [DOI] [PubMed] [Google Scholar]
- Lee A. G., Birdsall N. J., Metcalfe J. C. Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by 1 H nuclear magnetic resonance. Biochemistry. 1973 Apr 10;12(8):1650–1659. doi: 10.1021/bi00732a029. [DOI] [PubMed] [Google Scholar]
- Levi A., Shechter Y., Neufeld E. J., Schlessinger J. Mobility, clustering, and transport of nerve growth factor in embryonal sensory cells and in a sympathetic neuronal cell line. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3469–3473. doi: 10.1073/pnas.77.6.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liebman P. A., Entine G. Lateral diffusion of visual pigment in photorecptor disk membranes. Science. 1974 Aug 2;185(4149):457–459. doi: 10.1126/science.185.4149.457. [DOI] [PubMed] [Google Scholar]
- Peters R., Cherry R. J. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4317–4321. doi: 10.1073/pnas.79.14.4317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfenninger K. H., Bunge R. P. Freeze-fracturing of nerve growth cones and young fibers. A study of developing plasma membrane. J Cell Biol. 1974 Oct;63(1):180–196. doi: 10.1083/jcb.63.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfenninger K. H., Maylié-Pfenninger M. F. Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion. J Cell Biol. 1981 Jun;89(3):547–559. doi: 10.1083/jcb.89.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfenninger K. H., Rinderer E. R. Methods for the freeze-fracturing of nerve tissue cultures and cell monolayers. J Cell Biol. 1975 Apr;65(1):15–28. doi: 10.1083/jcb.65.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poo M. M., Poo W. J., Lam J. W. Lateral electrophoresis and diffusion of Concanavalin A receptors in the membrane of embryonic muscle cell. J Cell Biol. 1978 Feb;76(2):483–501. doi: 10.1083/jcb.76.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
- Poo M., Lam J. W., Orida N., Chao A. W. Electrophoresis and diffusion in the plane of the cell membrane. Biophys J. 1979 Apr;26(1):1–21. doi: 10.1016/S0006-3495(79)85231-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poo M. Rapid lateral diffusion of functional A Ch receptors in embryonic muscle cell membrane. Nature. 1982 Jan 28;295(5847):332–334. doi: 10.1038/295332a0. [DOI] [PubMed] [Google Scholar]
- Sabatini D. D., Kreibich G., Morimoto T., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol. 1982 Jan;92(1):1–22. doi: 10.1083/jcb.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scandella C. J., Devaux P., McConnell H. M. Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2056–2060. doi: 10.1073/pnas.69.8.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlessinger J., Koppel D. E., Axelrod D., Jacobson K., Webb W. W., Elson E. L. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2409–2413. doi: 10.1073/pnas.73.7.2409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlessinger J., Webb W. W., Elson E. L., Metzger H. Lateral motion and valence of Fc receptors on rat peritoneal mast cells. Nature. 1976 Dec 9;264(5586):550–552. doi: 10.1038/264550a0. [DOI] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Skriver E., Maunsbach A. B., Jørgensen P. L. Ultrastructure of Na,K-transport vesicles reconstituted with purified renal Na,K-ATPase. J Cell Biol. 1980 Sep;86(3):746–754. doi: 10.1083/jcb.86.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small R. K., Pfenninger K. H. Components of the plasma membrane of growing axons. I. Size and distribution of intramembrane particles. J Cell Biol. 1984 Apr;98(4):1422–1433. doi: 10.1083/jcb.98.4.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowers A. E., Hackenbrock C. R. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6246–6250. doi: 10.1073/pnas.78.10.6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stier A., Sackmann E. Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta. 1973 Jul 6;311(3):400–408. doi: 10.1016/0005-2736(73)90320-9. [DOI] [PubMed] [Google Scholar]
- Strichartz G. R., Small R. K., Pfenninger K. H. Components of the plasma membrane of growing axons. III. Saxitoxin binding to sodium channels. J Cell Biol. 1984 Apr;98(4):1444–1452. doi: 10.1083/jcb.98.4.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweadner K. J., Goldin S. M. Active transport of sodium and potassium ions: mechanism, function, and regulation. N Engl J Med. 1980 Apr 3;302(14):777–783. doi: 10.1056/NEJM198004033021404. [DOI] [PubMed] [Google Scholar]
- Wolf D. E., Schlessinger J., Elson E. L., Webb W. W., Blumenthal R., Henkart P. Diffusion and patching of macromolecules on planar lipid bilayer membranes. Biochemistry. 1977 Jul 26;16(15):3476–3483. doi: 10.1021/bi00634a029. [DOI] [PubMed] [Google Scholar]
- Zagyansky Y., Benda P., Bisconte J. C. Restricted lateral diffusion of concanavalin A receptors of different malignant cells of the nervous system. FEBS Lett. 1977 May 15;77(2):206–208. doi: 10.1016/0014-5793(77)80235-4. [DOI] [PubMed] [Google Scholar]
- de Laat S. W., van der Saag P. T., Elson E. L., Schlessinger J. Lateral diffusion of membrane lipids and proteins is increased specifically in neurites of differentiating neuroblastoma cells. Biochim Biophys Acta. 1979 Dec 4;558(2):247–250. doi: 10.1016/0005-2736(79)90064-6. [DOI] [PubMed] [Google Scholar]