Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Apr 1;98(4):1272–1278. doi: 10.1083/jcb.98.4.1272

Myelin-associated glycoprotein and myelinating Schwann cell-axon interaction in chronic B,B'-iminodipropionitrile neuropathy

PMCID: PMC2113228  PMID: 6201489

Abstract

The myelin-associated glycoprotein (MAG) is a heavily glycosylated integral membrane glycoprotein which is a minor component of isolated rat peripheral nervous system (PNS) myelin. Immunocytochemically MAG has been localized in the periaxonal region of PNS myelin sheaths. The periaxonal localization and biochemical features of MAG are consistent with the hypothesis that MAG plays a role in maintaining the periaxonal space of myelinated fibers. To test this hypothesis, MAG was localized immunocytochemically in 1-micron sections of the L5 ventral root from rats exposed to B,B'-iminodipropionitrile. In chronic states of B,B'- iminodipropionitrile intoxication, Schwann cell periaxonal membranes and the axolemma invaginate into giant axonal swellings and separate a central zone of normally oriented axoplasm from an outer zone of maloriented neurofilaments. Ultrastructurally, the width of the periaxonal space (12-14 nm) in the ingrowths is identical to that found in normally myelinated fibers. These Schwann cell ingrowths which are separated from compact myelin by several micra are stained intensely by MAG antiserum. Antiserum directed against Po protein, the major structural protein of compact PNS myelin, does not stain the ingrowths unless compact myelin is present. These results demonstrate the periaxonal localization of MAG and support a functional role for MAG in maintaining the periaxonal space of PNS myelinated fibers.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Charron L., Bray G. M. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study. J Neurocytol. 1976 Oct;5(8):565–573. doi: 10.1007/BF01175570. [DOI] [PubMed] [Google Scholar]
  2. Bunge M. B., Williams A. K., Wood P. M. Neuron-Schwann cell interaction in basal lamina formation. Dev Biol. 1982 Aug;92(2):449–460. doi: 10.1016/0012-1606(82)90190-7. [DOI] [PubMed] [Google Scholar]
  3. CHOU S. M., HARTMANN H. A. AXONAL LESIONS AND WALTZING SYNDROME AFTER IDPN ADMINISTRATION IN RATS. WITH A CONCEPT--"AXOSTASIS". Acta Neuropathol. 1964 May 5;3:428–450. doi: 10.1007/BF00688453. [DOI] [PubMed] [Google Scholar]
  4. Chou S. M., Hartmann H. A. Electron microscopy of focal neuroaxonal lesions produced by beta-beta-iminodipropionitrile (IDPN) in rats. I. The advanced lesions. Acta Neuropathol. 1965 Jul 1;4(6):590–603. doi: 10.1007/BF00691211. [DOI] [PubMed] [Google Scholar]
  5. Clark A. W., Griffin J. W., Price D. L. The axonal pathology in chronic IDPN intoxication. J Neuropathol Exp Neurol. 1980 Jan;39(1):42–55. doi: 10.1097/00005072-198001000-00004. [DOI] [PubMed] [Google Scholar]
  6. Dubois-Dalcq M., Rentier B., Baron A., van Evercooren N., Burge B. W. Structure and behavior of rat primary and secondary Schwann cells in vitro. Exp Cell Res. 1981 Feb;131(2):283–297. doi: 10.1016/0014-4827(81)90233-0. [DOI] [PubMed] [Google Scholar]
  7. Figlewicz D. A., Quarles R. H., Johnson D., Barbarash G. R., Sternberger N. H. Biochemical demonstration of the myelin-associated glycoprotein in the peripheral nervous system. J Neurochem. 1981 Sep;37(3):749–758. doi: 10.1111/j.1471-4159.1982.tb12551.x. [DOI] [PubMed] [Google Scholar]
  8. Griffin J. W., Fahnestock K. E., Price D. L., Hoffman P. N. Microtubule-neurofilament segregation produced by beta, beta'-iminodipropionitrile: evidence for the association of fast axonal transport with microtubules. J Neurosci. 1983 Mar;3(3):557–566. doi: 10.1523/JNEUROSCI.03-03-00557.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffin J. W., Hoffman P. N., Clark A. W., Carroll P. T., Price D. L. Slow axonal transport of neurofilament proteins: impairment of beta,beta'-iminodipropionitrile administration. Science. 1978 Nov 10;202(4368):633–635. doi: 10.1126/science.81524. [DOI] [PubMed] [Google Scholar]
  10. Griffin J. W., Price D. L. Demyelination in experimental beta, beta'-iminodipropionitrile and hexacarbon neuropathies. Evidence for an axonal influence. Lab Invest. 1981 Aug;45(2):130–141. [PubMed] [Google Scholar]
  11. Griffin J. W., Price D. L. Schwann cell and glial responses in beta, beta'-iminodipropionitrile intoxication. I. Schwann cell and oligodendrocyte ingrowths. J Neurocytol. 1981 Dec;10(6):995–1007. doi: 10.1007/BF01258526. [DOI] [PubMed] [Google Scholar]
  12. Hirano A., Dembitzer H. M. The periaxonal space in an experimental model of neuropathy: the mutant Syrian hamster with hindleg paralysis. J Neurocytol. 1981 Apr;10(2):261–269. doi: 10.1007/BF01257971. [DOI] [PubMed] [Google Scholar]
  13. Johnson D., Quarles R. H., Brady R. O. A radioimmunoassay for the myelin-associated glycoprotein. J Neurochem. 1982 Nov;39(5):1356–1362. doi: 10.1111/j.1471-4159.1982.tb12578.x. [DOI] [PubMed] [Google Scholar]
  14. Quarles R. H., Barbarash G. R., Figlewicz D. A., McIntyre L. J. Purification and partial characterization of the myelin-associated glycoprotein from adult rat brain. Biochim Biophys Acta. 1983 May 4;757(1):140–143. doi: 10.1016/0304-4165(83)90162-9. [DOI] [PubMed] [Google Scholar]
  15. Shimono M., Izumi K., Kuroiwa V. 3,3'-Iminodipropionitrile induced centrifugal segmental demyelination and onion bulb formation. J Neuropathol Exp Neurol. 1978 Jul-Aug;37(4):375–386. doi: 10.1097/00005072-197807000-00002. [DOI] [PubMed] [Google Scholar]
  16. Spencer P. S., Thomas P. K. Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons. J Neurocytol. 1974 Dec;3(6):763–783. doi: 10.1007/BF01097197. [DOI] [PubMed] [Google Scholar]
  17. Sternberger N. H., Quarles R. H., Itoyama Y., Webster H. D. Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1510–1514. doi: 10.1073/pnas.76.3.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Trapp B. D., Itoyama Y., Sternberger N. H., Quarles R. H., Webster H. Immunocytochemical localization of P0 protein in Golgi complex membranes and myelin of developing rat Schwann cells. J Cell Biol. 1981 Jul;90(1):1–6. doi: 10.1083/jcb.90.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trapp B. D., McIntyre L. J., Quarles R. H., Sternberger N. H., Webster H. D. Immunocytochemical localization of rat peripheral nervous system myelin proteins: P2 protein is not a component of all peripheral nervous system myelin sheaths. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3552–3556. doi: 10.1073/pnas.76.7.3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trapp B. D., Quarles R. H. Presence of the myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin. J Cell Biol. 1982 Mar;92(3):877–882. doi: 10.1083/jcb.92.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Webster H. D., Palkovits C. G., Stoner G. L., Favilla J. T., Frail D. E., Braun P. E. Myelin-associated glycoprotein: electron microscopic immunocytochemical localization in compact developing and adult central nervous system myelin. J Neurochem. 1983 Nov;41(5):1469–1479. doi: 10.1111/j.1471-4159.1983.tb00847.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES