Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Apr 1;98(4):1222–1230. doi: 10.1083/jcb.98.4.1222

Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs

PMCID: PMC2113230  PMID: 6609160

Abstract

A cell-free cytoplasmic preparation from activated Rana pipiens eggs could induce in demembranated Xenopus laevis sperm nuclei morphological changes similar to those seen during pronuclear formation in intact eggs. The condensed sperm chromatin underwent an initial rapid, but limited, dispersion. A nuclear envelope formed around the dispersed chromatin and the nuclei enlarged. The subcellular distribution of the components required for these changes was examined by separating the preparations into soluble (cytosol) and particulate fractions by centrifugation at 150,000 g for 2 h. Sperm chromatin was incubated with the cytosol or with the particulate material after it had been resuspended in either the cytosol, heat-treated (60 or 100 degrees C) cytosol or buffer. We found that the limited dispersion of chromatin occurred in each of these ooplasmic fractions, but not in the buffer alone. Nuclear envelope assembly required the presence of both untreated cytosol and particulate material. Ultrastructural examination of the sperm chromatin during incubation in the preparations showed that membrane vesicles of approximately 200 nm in diameter, found in the particulate fraction, flattened and fused together to contribute the membranous components of the nuclear envelope. The enlargement of the sperm nuclei occurred only after the nuclear envelope formed. The pronuclei formed in the cell-free preparations were able to incorporate [3H]dTTP into DNA. This incorporation was inhibited by aphidicolin, suggesting that the DNA synthesis by the pronuclei was dependent on DNA polymerase-alpha. When sperm chromatin was incubated greater than 3 h, the chromatin of the pronuclei often recondensed to form structures resembling mitotic chromosomes within the nuclear envelope. Therefore, it appeared that these ooplasmic preparations could induce, in vitro, nuclear changes resembling those seen during the first cell cycle in the zygote.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. V., Lengyel J. A. Changing rates of DNA and RNA synthesis in Drosophila embryos. Dev Biol. 1981 Feb;82(1):127–138. doi: 10.1016/0012-1606(81)90434-6. [DOI] [PubMed] [Google Scholar]
  2. Arms K. Cytonucleoproteins in cleaving eggs of Xenopus laevis. J Embryol Exp Morphol. 1968 Nov;20(3):367–374. [PubMed] [Google Scholar]
  3. Barry J. M., Merriam R. W. Swelling of hen erythrocyte nuclei in cytoplasm from Xenopus eggs. Exp Cell Res. 1972 Mar;71(1):90–96. doi: 10.1016/0014-4827(72)90267-4. [DOI] [PubMed] [Google Scholar]
  4. Benbow R. M., Ford C. C. Cytoplasmic control of nuclear DNA synthesis during early development of Xenopus laevis: a cell-free assay. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2437–2441. doi: 10.1073/pnas.72.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll A. G., Ozaki H. Changes in the histones of the sea urchin Stronglylocentrotus purpuratus at fertilization. Exp Cell Res. 1979 Mar 15;119(2):307–315. doi: 10.1016/0014-4827(79)90358-6. [DOI] [PubMed] [Google Scholar]
  6. Chai L. S., Weinfeld H., Sandberg A. A. Ultrastructural changes in the nuclear envelope during mitosis of Chinese hamster cells: a proposed mechanism of nuclear envelope reformation. J Natl Cancer Inst. 1974 Oct;53(4):1033–1048. doi: 10.1093/jnci/53.4.1033. [DOI] [PubMed] [Google Scholar]
  7. Das N. K., Micou-Eastwood J., Alfert M. Cytochemical studies on the protamine-type protein transition in sperm nuclei after fertilization and the early embryonic histones of Urechis caupo. Dev Biol. 1975 Apr;43(2):333–339. doi: 10.1016/0012-1606(75)90032-9. [DOI] [PubMed] [Google Scholar]
  8. Ecklund P. S., Levine L. Mouse sperm basic nuclear protein. Electrophoretic characterization and fate after fertilization. J Cell Biol. 1975 Aug;66(2):251–262. doi: 10.1083/jcb.66.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Franke W. W. Structure, biochemistry, and functions of the nuclear envelope. Int Rev Cytol. 1974;Suppl 4:71–236. [PubMed] [Google Scholar]
  10. Gerace L., Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980 Jan;19(1):277–287. doi: 10.1016/0092-8674(80)90409-2. [DOI] [PubMed] [Google Scholar]
  11. Gerace L., Blum A., Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol. 1978 Nov;79(2 Pt 1):546–566. doi: 10.1083/jcb.79.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham C. F. The regulation of DNA synthesis and mitosis in multinucleate frog eggs. J Cell Sci. 1966 Sep;1(3):363–374. doi: 10.1242/jcs.1.3.363. [DOI] [PubMed] [Google Scholar]
  13. Gulyas B. J. The rabbit zygote. 3. Formation of the blastomere nucleus. J Cell Biol. 1972 Dec;55(3):533–541. doi: 10.1083/jcb.55.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gurdon J. B. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J Embryol Exp Morphol. 1968 Nov;20(3):401–414. [PubMed] [Google Scholar]
  15. HINEGARDNER R. T., RAO B., FELDMAN D. E. THE DNA SYNTHETIC PERIOD DURING EARLY DEVELOPMENT OF THE SEA URCHIN EGG. Exp Cell Res. 1964 Oct;36:53–61. doi: 10.1016/0014-4827(64)90159-4. [DOI] [PubMed] [Google Scholar]
  16. Hoffner N. J., DiBerardino M. A. The acquisition of egg cytoplasmic non-histone proteins by nuclei during nuclear reprogramming. Exp Cell Res. 1977 Sep;108(2):421–427. doi: 10.1016/s0014-4827(77)80049-9. [DOI] [PubMed] [Google Scholar]
  17. Huchon D., Crozet N., Cantenot N., Ozon R. Germinal vesicle breakdown in the Xenopus laevis oocyte: description of a transient microtubular structure. Reprod Nutr Dev. 1981;21(1):135–148. doi: 10.1051/rnd:19810112. [DOI] [PubMed] [Google Scholar]
  18. Ikegami S., Taguchi T., Ohashi M., Oguro M., Nagano H., Mano Y. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature. 1978 Oct 5;275(5679):458–460. doi: 10.1038/275458a0. [DOI] [PubMed] [Google Scholar]
  19. Johnson R. T., Rao P. N. Nucleo-cytoplasmic interactions in the acheivement of nuclear synchrony in DNA synthesis and mitosis in multinucleate cells. Biol Rev Camb Philos Soc. 1971 Feb;46(1):97–155. doi: 10.1111/j.1469-185x.1971.tb01180.x. [DOI] [PubMed] [Google Scholar]
  20. Jost E., Johnson R. T. Nuclear lamina assembly, synthesis and disaggregation during the cell cycle in synchronized HeLa cells. J Cell Sci. 1981 Feb;47:25–53. doi: 10.1242/jcs.47.1.25. [DOI] [PubMed] [Google Scholar]
  21. Katagiri C., Moriya M. Spermatozoan response to the toad egg matured after removal of germinal vesicle. Dev Biol. 1976 May;50(1):235–241. doi: 10.1016/0012-1606(76)90080-4. [DOI] [PubMed] [Google Scholar]
  22. Kunkle M., Longo F. J., Magun B. E. Nuclear protein changes in the maternally and paternally derived chromatin at fertilization. J Exp Zool. 1978 Mar;203(3):371–380. doi: 10.1002/jez.1402030305. [DOI] [PubMed] [Google Scholar]
  23. Leonard R. A., Hoffner N. J., DiBerardino M. A. Induction of DNA synthesis in amphibian erythroid nuclei in Rana eggs following conditioning in meiotic oocytes. Dev Biol. 1982 Aug;92(2):343–355. doi: 10.1016/0012-1606(82)90180-4. [DOI] [PubMed] [Google Scholar]
  24. Lohka M. J., Masui Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science. 1983 May 13;220(4598):719–721. doi: 10.1126/science.6601299. [DOI] [PubMed] [Google Scholar]
  25. Lohka M. J., Masui Y. The germinal vesicle material required for sperm pronuclear formation is located in the soluble fraction of egg cytoplasm. Exp Cell Res. 1983 Oct 15;148(2):481–491. doi: 10.1016/0014-4827(83)90169-6. [DOI] [PubMed] [Google Scholar]
  26. Longo F. J. An ultrastructural analysis of mitosis and cytokinesis in the zygote of the sea urchin, Arbacia punctulata. J Morphol. 1972 Oct;138(2):207–238. doi: 10.1002/jmor.1051380206. [DOI] [PubMed] [Google Scholar]
  27. Longo F. J., Anderson E. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata. J Cell Biol. 1968 Nov;39(2):339–368. doi: 10.1083/jcb.39.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Longo F. J. Derivation of the membrane comprising the male pronuclear envelope in inseminated sea urchin eggs. Dev Biol. 1976 Apr;49(2):347–368. doi: 10.1016/0012-1606(76)90180-9. [DOI] [PubMed] [Google Scholar]
  29. Longo F. J. Fertilization: a comparative ultrastructural review. Biol Reprod. 1973 Sep;9(2):149–215. doi: 10.1093/biolreprod/9.2.149. [DOI] [PubMed] [Google Scholar]
  30. Longo F. J. Transformations of sperm nuclei upon insemination. Curr Top Dev Biol. 1978;12:149–184. doi: 10.1016/s0070-2153(08)60596-7. [DOI] [PubMed] [Google Scholar]
  31. Masui Y. Oscillatory activity of maturation promoting factor (MPF) in extracts of Rana pipiens eggs. J Exp Zool. 1982 Dec 30;224(3):389–399. doi: 10.1002/jez.1402240312. [DOI] [PubMed] [Google Scholar]
  32. Masui Y. Relative roles of the pituitary, follicle cells, and progesterone in the induction of oocyte maturation in Rana pipiens. J Exp Zool. 1967 Dec;166(3):365–375. doi: 10.1002/jez.1401660309. [DOI] [PubMed] [Google Scholar]
  33. Maul G. G. Nuclear pore complexes. Elimination and reconstruction during mitosis. J Cell Biol. 1977 Aug;74(2):492–500. doi: 10.1083/jcb.74.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Maul G. G. The nuclear and the cytoplasmic pore complex: structure, dynamics, distribution, and evolution. Int Rev Cytol Suppl. 1977;(6):75–186. [PubMed] [Google Scholar]
  35. Merriam R. W. Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. J Cell Sci. 1969 Sep;5(2):333–349. doi: 10.1242/jcs.5.2.333. [DOI] [PubMed] [Google Scholar]
  36. Meyerhof P. G., Masui Y. Ca and Mg control of cytostatic factors from Rana pipiens oocytes which cause metaphase and cleavage arrest. Dev Biol. 1977 Dec;61(2):214–229. doi: 10.1016/0012-1606(77)90293-7. [DOI] [PubMed] [Google Scholar]
  37. Poccia D., Salik J., Krystal G. Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sera urchin egg. Dev Biol. 1981 Mar;82(2):287–296. doi: 10.1016/0012-1606(81)90452-8. [DOI] [PubMed] [Google Scholar]
  38. Rodman T. C., Pruslin F. H., Hoffmann H. P., Allfrey V. G. Turnover of basic chromosomal proteins in fertilized eggs: a cytoimmunochemical study of events in vivo. J Cell Biol. 1981 Aug;90(2):351–361. doi: 10.1083/jcb.90.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Skoblina M. N. Role of karyoplasm in the emergence of capacity of egg cytoplasm to induce DNA synthesis in transplanted sperm nuclei. J Embryol Exp Morphol. 1976 Aug;36(1):67–72. [PubMed] [Google Scholar]
  40. Szollosi D., Calarco P. G., Donahue R. P. The nuclear envelope: its breakdown and fate in mammalian oogonia and oocytes. Anat Rec. 1972 Nov;174(3):325–339. doi: 10.1002/ar.1091740305. [DOI] [PubMed] [Google Scholar]
  41. Yanagimachi R., Noda Y. D. Electron microscope studies of sperm incorporation into the golden hamster egg. Am J Anat. 1970 Aug;128(4):429–462. doi: 10.1002/aja.1001280404. [DOI] [PubMed] [Google Scholar]
  42. Ziegler D., Masui Y. Control of chromosome behavior in amphibian oocytes. I. The activity of maturing oocytes inducing chromosome condensation in transplanted brain nuclei. Dev Biol. 1973 Dec;35(2):283–292. doi: 10.1016/0012-1606(73)90024-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES