Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Apr 1;98(4):1488–1496. doi: 10.1083/jcb.98.4.1488

A domain-specific marker for the hepatocyte plasma membrane. II. Ultrastructural localization of leucine aminopeptidase to the bile canalicular domain of isolated rat liver plasma membranes

PMCID: PMC2113232  PMID: 6201493

Abstract

Leucine aminopeptidase (LAP) is an integral membrane glycoprotein localized to the apical membrane domain of intestinal and kidney epithelial cells. By indirect immunofluorescence, we have shown that antibodies raised against rat intestinal LAP recognized a similar protein concentrated in the bile canalicular (BC) domain of the hepatocyte in situ (Roman, L.M., and A.L. Hubbard, 1983, J. Cell Biol., 96:1548-1558). We have extended this localization to the ultrastructural level. When a saponin-permeabilized, agarose-embedded plasma membrane (PM) fraction was incubated with affinity-purified anti- LAP, 85% of the protein A-gold particles associated with the three recognizable PM domains were present in the BC. The levels of labeling on the other two domains (sinusoidal and lateral) did not exceed that observed with nonimmune controls. The concentration of LAP in the BC domain in isolated PM sheets prompted us to use this antigen for the affinity isolation of BC membrane (Roman, L.M., and A.L. Hubbard, 1984, J. Cell Biol., 98:1497-1504, companion paper).

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Camilli P., Harris S. M., Jr, Huttner W. B., Greengard P. Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J Cell Biol. 1983 May;96(5):1355–1373. doi: 10.1083/jcb.96.5.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Emmelot P., Visser A., Benedetti E. L. Studies on plasma membranes. VII. A leucyl-beta-naphthylamidase-containing repeating unit on the surface of isolated liver and hepatoma plasma membranes. Biochim Biophys Acta. 1968 Apr 29;150(3):364–375. doi: 10.1016/0005-2736(68)90135-1. [DOI] [PubMed] [Google Scholar]
  3. Fujita M., Ota H., Kawai K., Matsui H., Nakao M. Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase. Biochim Biophys Acta. 1972 Aug 9;274(2):336–347. doi: 10.1016/0005-2736(72)90181-2. [DOI] [PubMed] [Google Scholar]
  4. George S. G., Kenny J. Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochem J. 1973 May;134(1):43–57. doi: 10.1042/bj1340043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hauri H. P., Quaroni A., Isselbacher K. J. Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5183–5186. doi: 10.1073/pnas.76.10.5183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hubbard A. L., Ma A. Isolation of rat hepatocyte plasma membranes. II. Identification of membrane-associated cytoskeletal proteins. J Cell Biol. 1983 Jan;96(1):230–239. doi: 10.1083/jcb.96.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hubbard A. L., Wall D. A., Ma A. Isolation of rat hepatocyte plasma membranes. I. Presence of the three major domains. J Cell Biol. 1983 Jan;96(1):217–229. doi: 10.1083/jcb.96.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hubbard A. L., Wilson G., Ashwell G., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J Cell Biol. 1979 Oct;83(1):47–64. doi: 10.1083/jcb.83.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Louvard D. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4132–4136. doi: 10.1073/pnas.77.7.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Louvard D., Maroux S., Baratti J., Desnuelle P., Mutaftschiev S. On the preparation and some properties of closed membrane vesicles from hog duodenal and jejunal brush border. Biochim Biophys Acta. 1973 Feb 16;291(3):747–763. doi: 10.1016/0005-2736(73)90478-1. [DOI] [PubMed] [Google Scholar]
  11. Oda M., Phillips M. J. Electron microscopic cytochemical characterization of bile canaliculi and bile ducts in vitro. Virchows Arch B Cell Pathol. 1975;18(2):109–118. [PubMed] [Google Scholar]
  12. Oda M., Yousef I. M., Funatsu K., Edwards V. D., Phillips M. J. Electron cytochemical and biochemical analysis of canaliculus-enriched liver cell membranes. J Ultrastruct Res. 1982 Jan;78(1):26–39. doi: 10.1016/s0022-5320(82)80011-7. [DOI] [PubMed] [Google Scholar]
  13. Rash J. E., Johnson T. J., Hudson C. S., Giddings F. D., Graham W. F., Eldefrawi M. E. Labelled-replica techniques: post-shadow labelling of intramembrane particles in freeze-fracture replicas. J Microsc. 1982 Nov;128(Pt 2):121–138. doi: 10.1111/j.1365-2818.1982.tb00444.x. [DOI] [PubMed] [Google Scholar]
  14. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane. III. Isolation of bile canalicular membrane by immunoadsorption. J Cell Biol. 1984 Apr;98(4):1497–1504. doi: 10.1083/jcb.98.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane: localization of leucine aminopeptidase to the bile canalicular domain. J Cell Biol. 1983 Jun;96(6):1548–1558. doi: 10.1083/jcb.96.6.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scalera V., Huang Y. K., Hildmann B., Murer H. A simple isolation method for basal-lateral plasma membranes from rat kidney cortex. Membr Biochem. 1981;4(1):49–61. doi: 10.3109/09687688109065422. [DOI] [PubMed] [Google Scholar]
  17. Seeman P. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin. J Cell Biol. 1967 Jan;32(1):55–70. doi: 10.1083/jcb.32.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vannier C., Louvard D., Maroux S., Desnuelle P. Structural and topological homology between porcine intestinal and renal brush border aminopeptidase. Biochim Biophys Acta. 1976 Nov 11;455(1):185–199. doi: 10.1016/0005-2736(76)90163-2. [DOI] [PubMed] [Google Scholar]
  19. Wehland J., Willingham M. C., Gallo M. G., Pastan I. The morphologic pathway of exocytosis of the vesicular stomatitis virus G protein in cultured fibroblasts. Cell. 1982 Apr;28(4):831–841. doi: 10.1016/0092-8674(82)90062-9. [DOI] [PubMed] [Google Scholar]
  20. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ziomek C. A., Schulman S., Edidin M. Redistribution of membrane proteins in isolated mouse intestinal epithelial cells. J Cell Biol. 1980 Sep;86(3):849–857. doi: 10.1083/jcb.86.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES