Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Apr 1;98(4):1505–1513. doi: 10.1083/jcb.98.4.1505

Microdomains of distinctive glycoprotein composition in the kidney proximal tubule brush border

PMCID: PMC2113241  PMID: 6371023

Abstract

Two membrane proteins, maltase and gp330 (the pathogenic antigen of Heymann nephritis), present in the proximal tubule brush border have recently been independently purified and found to be large glycoproteins of similar molecular weight (Mr = approximately 300,000) by SDS PAGE. To determine the relationship between the two, monoclonal antibodies raised against the purified proteins were used for comparative immunochemical analyses and immunocytochemical localization. When a detergent extract of [35S]methionine-labeled rat renal cortex was used for immunoprecipitation with monoclonal antimaltase IgG, a single band of approximately 300 kdaltons was precipitated, whereas a single 330-kdalton band was precipitated with monoclonal anti-gp330 IgG. Monoclonal antimaltase (gp300) IgG also immunoprecipitated maltase activity from solubilized renal maltase preparations, whereas monoclonal anti-gp330 IgG failed to do so. When cyanogen bromide-generated peptide maps of the two proteins were compared, there were many similar peptides, but some differences. When maltase and gp330 were localized by indirect immunofluorescence and by indirect immunoperoxidase and immunogold techniques at the electron microscope level, they were found to be differently distributed in the brush border of the initial (S1 and S2) segments of the proximal tubule: maltase was concentrated (approximately 90%) on the microvilli, and gp330 was concentrated (approximately 90%) in the clathrin-coated apical invaginations located at the base of the microvilli. We conclude that maltase (gp300) and the Heymann nephritis antigen (gp330) are structurally related membrane glycoproteins with a distinctive distribution in the proximal tubule brush border which may serve as markers for the microvillar and coated microdomains, respectively, of the apical plasmalemma.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger S. J., Sacktor B. Isolation and biochemical characterization of brush borders from rabbit kidney. J Cell Biol. 1970 Dec;47(3):637–645. doi: 10.1083/jcb.47.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bode F., Pockrandt-Hemstedt H., Baumann K., Kinne R. Analysis of the pinocytic process in rat kidney. I. Isolation of pinocytic vesicles from rat kidney cortex. J Cell Biol. 1974 Dec;63(3):998–1008. doi: 10.1083/jcb.63.3.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Booth A. G., Kenny A. J. Proteins of the kidney microvillus membrane. Identification of subunits after sodium dodecylsullphate/polyacrylamide-gel electrophoresis. Biochem J. 1976 Nov;159(2):395–407. doi: 10.1042/bj1590395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B. M., Hostetter T. H., Humes H. D. Glomerular permselectivity: barrier function based on discrimination of molecular size and charge. Am J Physiol. 1978 Jun;234(6):F455–F460. doi: 10.1152/ajprenal.1978.234.6.F455. [DOI] [PubMed] [Google Scholar]
  5. Bretscher M. S. Surface uptake by fibroblasts and its consequences. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):707–712. doi: 10.1101/sqb.1982.046.01.067. [DOI] [PubMed] [Google Scholar]
  6. Bretscher M. S., Thomson J. N., Pearse B. M. Coated pits act as molecular filters. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4156–4159. doi: 10.1073/pnas.77.7.4156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  8. Brown W. J., Farquhar M. G. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell. 1984 Feb;36(2):295–307. doi: 10.1016/0092-8674(84)90223-x. [DOI] [PubMed] [Google Scholar]
  9. Burridge K. Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Methods Enzymol. 1978;50:54–64. doi: 10.1016/0076-6879(78)50007-4. [DOI] [PubMed] [Google Scholar]
  10. Christensen E. I. Rapid membrane recycling in renal proximal tubule cells. Eur J Cell Biol. 1982 Nov;29(1):43–49. [PubMed] [Google Scholar]
  11. Collett M. S., Erikson R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2021–2024. doi: 10.1073/pnas.75.4.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cortney M. A., Sawin L. L., Weiss D. D. Renal tubular protein absorption in the rat. J Clin Invest. 1970 Jan;49(1):1–4. doi: 10.1172/JCI106208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Courtoy P. J., Picton D. H., Farquhar M. G. Resolution and limitations of the immunoperoxidase procedure in the localization of extracellular matrix antigens. J Histochem Cytochem. 1983 Jul;31(7):945–951. doi: 10.1177/31.7.6304184. [DOI] [PubMed] [Google Scholar]
  14. Courtoy P. J., Timpl R., Farquhar M. G. Comparative distribution of laminin, type IV collagen, and fibronectin in the rat glomerulus. J Histochem Cytochem. 1982 Sep;30(9):874–886. doi: 10.1177/30.9.7130672. [DOI] [PubMed] [Google Scholar]
  15. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gershoni J. M., Palade G. E. Protein blotting: principles and applications. Anal Biochem. 1983 May;131(1):1–15. doi: 10.1016/0003-2697(83)90128-8. [DOI] [PubMed] [Google Scholar]
  17. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  18. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  19. Heidrich H. G., Kinne R., Kinne-Saffran E., Hannig K. The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J Cell Biol. 1972 Aug;54(2):232–245. doi: 10.1083/jcb.54.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
  21. Kerjaschki D., Farquhar M. G. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med. 1983 Feb 1;157(2):667–686. doi: 10.1084/jem.157.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kerjaschki D., Farquhar M. G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5557–5561. doi: 10.1073/pnas.79.18.5557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. MILLER F. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J Biophys Biochem Cytol. 1960 Dec;8:689–718. doi: 10.1083/jcb.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maack T., Johnson V., Kau S. T., Figueiredo J., Sigulem D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 1979 Sep;16(3):251–270. doi: 10.1038/ki.1979.128. [DOI] [PubMed] [Google Scholar]
  26. Malathi P., Preiser H., Fairclough P., Mallett P., Crane R. K. A rapid method for the isolation of kidney brush border membranes. Biochim Biophys Acta. 1979 Jun 13;554(1):259–263. doi: 10.1016/0005-2736(79)90023-3. [DOI] [PubMed] [Google Scholar]
  27. Matsudaira P. T., Burgess D. R. Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol. 1979 Dec;83(3):667–673. doi: 10.1083/jcb.83.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maunsbach A. B. Cellular mechanisms of tubular protein transport. Int Rev Physiol. 1976;11:145–167. [PubMed] [Google Scholar]
  29. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  30. Pisam M., Ripoche P. Redistribution of surface macromolecules in dissociated epithelial cells. J Cell Biol. 1976 Dec;71(3):907–920. doi: 10.1083/jcb.71.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reiss U., Sacktor B. Alteration of kidney brush border membrane maltase in aging rats. Biochim Biophys Acta. 1982 Jun 24;704(3):422–426. doi: 10.1016/0167-4838(82)90063-2. [DOI] [PubMed] [Google Scholar]
  32. Reiss U., Sacktor B. Kidney brush border membrane maltase: purification and properties. Arch Biochem Biophys. 1981 Jul;209(2):342–348. doi: 10.1016/0003-9861(81)90290-3. [DOI] [PubMed] [Google Scholar]
  33. Reiss U., Sacktor B. Monoclonal antibodies to renal brush border membrane maltase: age-associated antigenic alterations. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3255–3259. doi: 10.1073/pnas.80.11.3255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simionescu M., Simionescu N., Palade G. E. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol. 1982 Aug;94(2):406–413. doi: 10.1083/jcb.94.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Simionescu M., Simionescu N., Silbert J. E., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol. 1981 Sep;90(3):614–621. doi: 10.1083/jcb.90.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sørensen S. H., Norén O., Sjöström H., Danielsen E. M. Amphiphilic pig intestinal microvillus maltase/glucoamylase. Structure and specificity. Eur J Biochem. 1982 Sep 1;126(3):559–568. doi: 10.1111/j.1432-1033.1982.tb06817.x. [DOI] [PubMed] [Google Scholar]
  37. Ziomek C. A., Schulman S., Edidin M. Redistribution of membrane proteins in isolated mouse intestinal epithelial cells. J Cell Biol. 1980 Sep;86(3):849–857. doi: 10.1083/jcb.86.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES