Abstract
To determine the relationship between the state of actin polymerization in neutrophils and the formyl-methionyl-leucyl-phenylalanine (fMLP)- induced changes in the locomotive behavior of neutrophils, the mean rate of locomotion (mROL), the percent G-actin, and the relative F- actin content of neutrophils were determined. The mROL was quantified by analysis of the locomotion of individual cells; the percentage of total actin as G-actin was measured by DNase I inhibition; and the F- actin was determined by fluorescence-activated cell sorter (FACS) analysis of nitrobenzoxadiazol (NBD)-phallacidin-stained neutrophils. Neutrophils stimulated with fMLP exhibit a change in their mROL that is biphasic and dose dependent. The mROL of neutrophils exposed to 10(-8) M fMLP, the KD, is 11.9 +/- 2.0 micron/min (baseline control 6.2 +/- 1.0 micron/min). At 10(-6) M fMLP, the mROL returns to baseline levels. Stimulation of neutrophils with fMLP also induces action polymerization. Evidence for actin polymerization includes a 26.5% reduction in G-actin and a twofold increase in the amount of NBD- phallacidin staining of cells as determined by FACS analysis. The NBD- phallacidin staining is not due to phagocytosis, is inhibited by phalloidin, requires cell permeabilization, and is saturable at NBD- phallacidin concentrations greater than 10(-7)M. The fMLP-induced increase in NBD-phallacidin staining occurs rapidly (less than 2 min), is temperature dependent, and is not due to cell aggregation. Since NBD- phallacidin binds specifically to F-actin, the increase in fluorescent staining of cells likely reflects an increase in the F-actin content of fMLP-stimulated cells. FACS analysis of NBD-phallacidin-stained cells shows that the relative F-actin content of neutrophils stimulated with 10(-11)-10(-8)M fMLP increases twofold and remains increased at concentrations greater than 10(-8)M fMLP. Therefore, the fMLP-induced increase in F-actin content of neutrophils as determined by FACS analysis of NBD-phallacidin-stained cells coincides with a decrease in G-actin and correlates with increased mROL of neutrophils under some (10(-11)-10(-8)M fMLP) but not all (greater than 10(-8)M fMLP) conditions of stimulation. Quantification of the F-actin content of nonmuscle cells by FACS analysis of NBD-phallacidin-stained cells may allow rapid assessment of the state of actin polymerization and correlation of that state with the motile behavior of nonmuscle cells.
Full Text
The Full Text of this article is available as a PDF (778.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barak L. S., Yocum R. R. 7-Nitrobenz-2-oxa-1,3-diazole (NBD)--phallacidin: synthesis of a fluorescent actin probe. Anal Biochem. 1981 Jan 1;110(1):31–38. doi: 10.1016/0003-2697(81)90107-x. [DOI] [PubMed] [Google Scholar]
- Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Bray D., Thomas C. The actin content of fibroblasts. Biochem J. 1975 May;147(2):221–228. doi: 10.1042/bj1470221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burridge K., Feramisco J. R. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981 Dec 10;294(5841):565–567. doi: 10.1038/294565a0. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Carlsson L., Markey F., Blikstad I., Persson T., Lindberg U. Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6376–6380. doi: 10.1073/pnas.76.12.6376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casella J. F., Flanagan M. D., Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature. 1981 Sep 24;293(5830):302–305. doi: 10.1038/293302a0. [DOI] [PubMed] [Google Scholar]
- Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giffard R. G., Spudich J. A., Spudich A. Ca2+-sensitive isolation of a cortical actin matrix from Dictyostelium amoebae. J Muscle Res Cell Motil. 1983 Feb;4(1):115–131. doi: 10.1007/BF00711962. [DOI] [PubMed] [Google Scholar]
- Harris H. E., Bamburg J. R., Bernstein B. W., Weeds A. G. The depolymerization of actin by specific proteins from plasma and brain: a quantitative assay. Anal Biochem. 1982 Jan 1;119(1):102–114. doi: 10.1016/0003-2697(82)90672-8. [DOI] [PubMed] [Google Scholar]
- Hartwig J. H., Stossel T. P. Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments. J Mol Biol. 1981 Jan 25;145(3):563–581. doi: 10.1016/0022-2836(81)90545-3. [DOI] [PubMed] [Google Scholar]
- Herman I. M., Crisona N. J., Pollard T. D. Relation between cell activity and the distribution of cytoplasmic actin and myosin. J Cell Biol. 1981 Jul;90(1):84–91. doi: 10.1083/jcb.90.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard T. H. Quantification of the locomotive behavior of polymorphonuclear leukocytes in clot preparations. Blood. 1982 May;59(5):946–951. [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Jennings L. K., Fox J. E., Edwards H. H., Phillips D. R. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem. 1981 Jul 10;256(13):6927–6932. [PubMed] [Google Scholar]
- Keller H. U., Barandun S., Kistler P., Ploem J. S. Locomotion and adhesion of neutrophil granulocytes. Effects of albumin, fibrinogen and gamma globulins studied by reflection contrast microscopy. Exp Cell Res. 1979 Sep;122(2):351–362. doi: 10.1016/0014-4827(79)90311-2. [DOI] [PubMed] [Google Scholar]
- Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver J. M., Krawiec J. A., Becker E. L. The distribution of actin during chemotaxis in rabbit neutrophils. J Reticuloendothel Soc. 1978 Dec;24(6):697–704. [PubMed] [Google Scholar]
- Rao K. M., Varani J. Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils. J Immunol. 1982 Oct;129(4):1605–1607. [PubMed] [Google Scholar]
- Schliwa M. Proteins associated with cytoplasmic actin. Cell. 1981 Sep;25(3):587–590. doi: 10.1016/0092-8674(81)90166-5. [DOI] [PubMed] [Google Scholar]
- Seligmann B., Chused T. M., Gallin J. I. Human neutrophil heterogeneity identified using flow microfluorometry to monitor membrane potential. J Clin Invest. 1981 Nov;68(5):1125–1131. doi: 10.1172/JCI110356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Sullivan J. A., Mandell G. L. Motility of human polymorphonuclear neutrophils: microscopic analysis of substrate adhesion and distribution of F-actin. Cell Motil. 1983;3(1):31–46. doi: 10.1002/cm.970030104. [DOI] [PubMed] [Google Scholar]
- Valerius N. H., Stendahl O., Hartwig J. H., Stossel T. P. Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis. Cell. 1981 Apr;24(1):195–202. doi: 10.1016/0092-8674(81)90515-8. [DOI] [PubMed] [Google Scholar]
- White J. R., Naccache P. H., Sha'afi R. I. The synthetic chemotactic peptide formyl-methionyl-leucyl-phenylalanine causes an increase in actin associated with the cytoskeleton in rabbit neutrophils. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1144–1149. doi: 10.1016/0006-291x(82)92120-9. [DOI] [PubMed] [Google Scholar]
- Wieland T., Faulstich H. Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit Rev Biochem. 1978 Dec;5(3):185–260. doi: 10.3109/10409237809149870. [DOI] [PubMed] [Google Scholar]
- Williams L. T., Snyderman R., Pike M. C., Lefkowitz R. J. Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1204–1208. doi: 10.1073/pnas.74.3.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yocum R. R., Simons D. M. Amatoxins and phallotoxins in Amanita species of the northeastern United States. Lloydia. 1977 Mar-Apr;40(2):178–190. [PubMed] [Google Scholar]
- Zigmond S. H. Chemotaxis by polymorphonuclear leukocytes. J Cell Biol. 1978 May;77(2):269–287. doi: 10.1083/jcb.77.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H., Levitsky H. I., Kreel B. J. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. J Cell Biol. 1981 Jun;89(3):585–592. doi: 10.1083/jcb.89.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]