Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):445–452. doi: 10.1083/jcb.99.2.445

Bidirectional transport of fluorescently labeled vesicles introduced into extruded axoplasm of squid Loligo pealei

PMCID: PMC2113255  PMID: 6204992

Abstract

A reconstituted model was devised to study the mechanisms of fast axonal transport in the squid Loligo pealei. Axonal vesicles were isolated from axoplasm of the giant axon and labeled with rhodamine- conjugated octadecanol, a membrane-specific fluorescent probe. The labeled vesicles were then injected into a fresh preparation of extruded axoplasm in which endogenous vesicle transport was occurring normally. The movement of the fluorescent, exogenous vesicles was observed by epifluorescence microscopy for as long as 5 min without significant photobleaching, and the transport of endogenous, nonfluorescent vesicles was monitored by video-enhanced differential interference-contrast microscopy. The transport of fluorescent, exogenous vesicles was shown to be bidirectional and ATP-dependent and occurred at a mean rate of 6.98 +/- 4.11 micron/s (mean +/- standard deviation, n = 41). In comparison, the mean rate of transport of nonfluorescent, endogenous vesicles in control axoplasm treated with vesicle buffer alone was 4.76 +/- 1.60 micron/s (n = 64). These rates are slightly higher than the mean rate of endogenous vesicle movement in extruded axoplasm (3.56 +/- 1.05 micron/s, n = 40) not subject to vesicles or vesicle buffer. Not all vesicles and organelles, exogenous or endogenous, were observed to move. In experiments in which proteins of the surface of the fluorescent vesicles were digested with trypsin before injection, no movement of the fluorescent vesicles was observed, although the transport of endogenous vesicles and organelles appeared to proceed normally. The results summarized above indicate that isolated vesicles, incorporated into axoplasm, move with the characteristics of fast axonal transport. Because the vesicles are fluorescent, they can be readily distinguished from nonfluorescent, endogenous vesicles. Moreover, this system permits vesicle characteristics to be experimentally manipulated, and therefore may prove valuable for the elucidation of the mechanisms of fast axonal transport.

Full Text

The Full Text of this article is available as a PDF (918.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Bray D. Rapid transport of foreign particles microinjected into crab axons. Nature. 1983 Jun 23;303(5919):718–720. doi: 10.1038/303718a0. [DOI] [PubMed] [Google Scholar]
  2. Adams R. J. Organelle movement in axons depends on ATP. Nature. 1982 May 27;297(5864):327–329. doi: 10.1038/297327a0. [DOI] [PubMed] [Google Scholar]
  3. Allen R. D., Allen N. S. Video-enhanced microscopy with a computer frame memory. J Microsc. 1983 Jan;129(Pt 1):3–17. doi: 10.1111/j.1365-2818.1983.tb04157.x. [DOI] [PubMed] [Google Scholar]
  4. Allen R. D., Metuzals J., Tasaki I., Brady S. T., Gilbert S. P. Fast axonal transport in squid giant axon. Science. 1982 Dec 10;218(4577):1127–1129. doi: 10.1126/science.6183744. [DOI] [PubMed] [Google Scholar]
  5. Black M. M., Kurdyla J. T. Microtubule-associated proteins of neurons. J Cell Biol. 1983 Oct;97(4):1020–1028. doi: 10.1083/jcb.97.4.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boss W. F., Kelley C. J., Landsberger F. R. A novel synthesis of spin label derivatives of phosphatidylcholine. Anal Biochem. 1975 Mar;64(1):289–292. doi: 10.1016/0003-2697(75)90432-7. [DOI] [PubMed] [Google Scholar]
  7. Brady S. T., Lasek R. J., Allen R. D. Fast axonal transport in extruded axoplasm from squid giant axon. Science. 1982 Dec 10;218(4577):1129–1131. doi: 10.1126/science.6183745. [DOI] [PubMed] [Google Scholar]
  8. Brady S. T., Lasek R. J. Axonal transport: a cell-biological method for studying proteins that associate with the cytoskeleton. Methods Cell Biol. 1982;25(Pt B):365–398. doi: 10.1016/s0091-679x(08)61434-x. [DOI] [PubMed] [Google Scholar]
  9. Brimijoin S. Stop-flow: a new technique for measuring axonal transport, and its application to the transport of dopamine-beta-hydroxylase. J Neurobiol. 1975 Jul;6(4):379–394. doi: 10.1002/neu.480060404. [DOI] [PubMed] [Google Scholar]
  10. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  11. Forman D. S., Brown K. J., Livengood D. R. Fast axonal transport in permeabilized lobster giant axons is inhibited by vanadate. J Neurosci. 1983 Jun;3(6):1279–1288. doi: 10.1523/JNEUROSCI.03-06-01279.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
  13. Hayden J. H., Allen R. D., Goldman R. D. Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motil. 1983;3(1):1–19. doi: 10.1002/cm.970030102. [DOI] [PubMed] [Google Scholar]
  14. Inoue I., Pant H. C., Tasaki I., Gainer H. Release of proteins from the inner surface of squid axon membrane labeled with tritiated N-ethylmaleimide. J Gen Physiol. 1976 Oct;68(4):385–395. doi: 10.1085/jgp.68.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keller P. M., Person S., Snipes W. A fluorescence enhancement assay of cell fusion. J Cell Sci. 1977 Dec;28:167–177. doi: 10.1242/jcs.28.1.167. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lux H. D., Schubert P., Kreutzberg G. W., Globus A. Excitation and axonal flow: autoradiographic study on motoneurons intracellularly injected with a 3H-amino acid. Exp Brain Res. 1970;10(2):197–204. doi: 10.1007/BF00234732. [DOI] [PubMed] [Google Scholar]
  18. Matus A., Bernhardt R., Hugh-Jones T. High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proc Natl Acad Sci U S A. 1981 May;78(5):3010–3014. doi: 10.1073/pnas.78.5.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmitt F. O. Fibrous proteins--neuronal organelles. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1092–1101. doi: 10.1073/pnas.60.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  23. Smith R. S. The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J Neurocytol. 1980 Feb;9(1):39–65. doi: 10.1007/BF01205226. [DOI] [PubMed] [Google Scholar]
  24. Tasaki I., Singer I., Takenaka T. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J Gen Physiol. 1965 Jul;48(6):1095–1123. doi: 10.1085/jgp.48.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Travis J. L., Allen R. D. Studies on the motility of the foraminifera. I. Ultrastructure of the reticulopodial network of Allogromia laticollaris (Arnold). J Cell Biol. 1981 Jul;90(1):211–221. doi: 10.1083/jcb.90.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsukita S., Ishikawa H. The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol. 1980 Mar;84(3):513–530. doi: 10.1083/jcb.84.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vallee R. B., Borisy G. G. Removal of the projections from cytoplasmic microtubules in vitro by digestion with trypsin. J Biol Chem. 1977 Jan 10;252(1):377–382. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES