Abstract
Membrane halves of boar sperm flagella were produced by freeze-fracture and labeled in situ with concanavalin A and wheat germ agglutinin; the lectins were visualized with protein-gold complexes. Concanavalin A and wheat germ agglutinin binding sites partition with both protoplasmic and exoplasmic halves of the membrane. A high density of lectin marking was found on protoplasmic membrane halves; we conclude that the label corresponds to transmembrane glycoproteins that, on freeze-fracture, are dragged across the outer (exoplasmic) half of the phospholipid bilayer. Our demonstration of numerous transmembrane proteins in sperm flagella offers the structural setting for previous models on flagellar surface motility that postulate accessibility of motile membrane components to the submembranous cytoskeleton.
Full Text
The Full Text of this article is available as a PDF (965.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp Cell Res. 1970 Oct;62(2):389–398. doi: 10.1016/0014-4827(70)90570-7. [DOI] [PubMed] [Google Scholar]
- Ackerman G. A. Distribution of wheat germ agglutinin binding sites on normal human and guinea pig bone marrow cells: an ultrastructural histochemical study. Anat Rec. 1979 Dec;195(4):641–657. doi: 10.1002/ar.1091950406. [DOI] [PubMed] [Google Scholar]
- Aguas A. P., Pinto da Silva P. Regionalization of transmembrane glycoproteins in the plasma membrane of boar sperm head is revealed by fracture-label. J Cell Biol. 1983 Nov;97(5 Pt 1):1356–1364. doi: 10.1083/jcb.97.5.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albrecht-Buehler G., Goldman R. D. Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells. Exp Cell Res. 1976 Feb;97(2):329–339. doi: 10.1016/0014-4827(76)90624-8. [DOI] [PubMed] [Google Scholar]
- Allen R. D. A reinvestigation of cross-sections of cilia. J Cell Biol. 1968 Jun;37(3):825–831. doi: 10.1083/jcb.37.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baccetti B., Burrini A. G., Dallai R., Pallini V. The dynein electrophoretic bands in axonemes naturally lacking the inner or the outer arm. J Cell Biol. 1979 Feb;80(2):334–340. doi: 10.1083/jcb.80.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbosa M. L., Pinto da Silva P. Restriction of glycolipids to the outer half of a plasma membrane: concanavalin A labeling of membrane halves in Acanthamoeba castellanii. Cell. 1983 Jul;33(3):959–966. doi: 10.1016/0092-8674(83)90039-9. [DOI] [PubMed] [Google Scholar]
- Bessen M., Fay R. B., Witman G. B. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol. 1980 Aug;86(2):446–455. doi: 10.1083/jcb.86.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhavanandan V. P., Katlic A. W. The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem. 1979 May 25;254(10):4000–4008. [PubMed] [Google Scholar]
- Bloodgood R. A. Dynamic properties of the flagellar surface. Symp Soc Exp Biol. 1982;35:353–380. [PubMed] [Google Scholar]
- Bloodgood R. A. Flagellum as a model system for studying dynamic cell-surface events. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):683–693. doi: 10.1101/sqb.1982.046.01.064. [DOI] [PubMed] [Google Scholar]
- Bloodgood R. A., Leffler E. M., Bojczuk A. T. Reversible inhibition of Chlamydomonas flagellar surface motility. J Cell Biol. 1979 Sep;82(3):664–674. doi: 10.1083/jcb.82.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloodgood R. A., May G. S. Functional modification of the Chlamydomonas flagellar surface. J Cell Biol. 1982 Apr;93(1):88–96. doi: 10.1083/jcb.93.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloodgood R. A. Motility occurring in association with the surface of the Chlamydomonas flagellum. J Cell Biol. 1977 Dec;75(3):983–989. doi: 10.1083/jcb.75.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dentler W. L. Fine structural localization of phosphatases in cilia and basal bodies of Tetrahymena pyriformis. Tissue Cell. 1977;9(2):209–222. doi: 10.1016/0040-8166(77)90017-9. [DOI] [PubMed] [Google Scholar]
- Dentler W. L. Microtubule-membrane interactions in cilia and flagella. Int Rev Cytol. 1981;72:1–47. doi: 10.1016/s0074-7696(08)61193-6. [DOI] [PubMed] [Google Scholar]
- Dentler W. L., Pratt M. M., Stephens R. E. Microtubule-membrane interactions in cilia. II. Photochemical cross-linking of bridge structures and the identification of a membrane-associated dynein-like ATPase. J Cell Biol. 1980 Feb;84(2):381–403. doi: 10.1083/jcb.84.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas G. J. Sliding filaments in sperm flagella. J Theor Biol. 1975 Sep;53(2):247–252. doi: 10.1016/s0022-5193(75)80001-4. [DOI] [PubMed] [Google Scholar]
- Fawcett D. W. A comparative view of sperm ultrastructure. Biol Reprod Suppl. 1970;2:90–127. [PubMed] [Google Scholar]
- Fukuda M., Eshdat Y., Tarone G., Marchesi V. T. Isolation and characterization of peptides derived from the cytoplasmic segment of band 3, the predominant intrinsic membrane protein of the human erythrocyte. J Biol Chem. 1978 Apr 10;253(7):2419–2428. [PubMed] [Google Scholar]
- Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
- Gibbons I. R. Cilia and flagella of eukaryotes. J Cell Biol. 1981 Dec;91(3 Pt 2):107s–124s. doi: 10.1083/jcb.91.3.107s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilula N. B., Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol. 1972 May;53(2):494–509. doi: 10.1083/jcb.53.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldfischer S., Kress Y., Coltoff-Schiller B., Berman J. Primary fixation in osmium-potassium ferrocyanide: the staining of glycogen, glycoproteins, elastin, an intranuclear reticular structure, and intercisternal trabeculae. J Histochem Cytochem. 1981 Sep;29(9):1105–1111. doi: 10.1177/29.9.6169760. [DOI] [PubMed] [Google Scholar]
- Goodenough U. W., Heuser J. E. Substructure of the outer dynein arm. J Cell Biol. 1982 Dec;95(3):798–815. doi: 10.1083/jcb.95.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris A. K. Cell surface movements related to cell locomotion. Ciba Found Symp. 1973;14:3–26. doi: 10.1002/9780470719978.ch2. [DOI] [PubMed] [Google Scholar]
- Harris A., Dunn G. Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp Cell Res. 1972 Aug;73(2):519–523. doi: 10.1016/0014-4827(72)90084-5. [DOI] [PubMed] [Google Scholar]
- Horisberger M., Rosset J. Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem. 1977 Apr;25(4):295–305. doi: 10.1177/25.4.323352. [DOI] [PubMed] [Google Scholar]
- Johnson K. A., Wall J. S. Structure and molecular weight of the dynein ATPase. J Cell Biol. 1983 Mar;96(3):669–678. doi: 10.1083/jcb.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koda L. Y., Partlow L. M. Membrane marker movement on sympathetic axons in tissue culture. J Neurobiol. 1976 Mar;7(2):157–172. doi: 10.1002/neu.480070208. [DOI] [PubMed] [Google Scholar]
- LANSING A. I., LAMY F. Localization of ATPase in rotifer cilia. J Biophys Biochem Cytol. 1961 Nov;11:498–501. doi: 10.1083/jcb.11.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchesi V. T. Functional proteins of the human red blood cell membrane. Semin Hematol. 1979 Jan;16(1):3–20. [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Olson G. E., Linck R. W. Observations of the structural components of flagellar axonemes and central pair microtubules from rat sperm. J Ultrastruct Res. 1977 Oct;61(1):21–43. doi: 10.1016/s0022-5320(77)90004-1. [DOI] [PubMed] [Google Scholar]
- Peters B. P., Ebisu S., Goldstein I. J., Flashner M. Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 1979 Nov 27;18(24):5505–5511. doi: 10.1021/bi00591a038. [DOI] [PubMed] [Google Scholar]
- Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P., Parkison C., Dwyer N. Fracture-label:O cytochemistry of freeze-fracture faces in the erythrocyte membrane. Proc Natl Acad Sci U S A. 1981 Jan;78(1):343–347. doi: 10.1073/pnas.78.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson J. D. Membrane structure. J Cell Biol. 1981 Dec;91(3 Pt 2):189s–204s. doi: 10.1083/jcb.91.3.189s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J. E., Lenard J. Membrane asymmetry. Science. 1977 Feb 25;195(4280):743–753. doi: 10.1126/science.402030. [DOI] [PubMed] [Google Scholar]
- Russell L., Peterson R., Freund M. Direct evidence for formation of hybrid vesicles by fusion of plasma and outer acrosomal membranes during the acrosome reaction in boar spermatozoa. J Exp Zool. 1979 Apr;208(1):41–56. doi: 10.1002/jez.1402080106. [DOI] [PubMed] [Google Scholar]
- Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattler C. A., Staehelin L. A. Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia. J Cell Biol. 1974 Aug;62(2):473–490. doi: 10.1083/jcb.62.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steck T. L. The band 3 protein of the human red cell membrane: a review. J Supramol Struct. 1978;8(3):311–324. doi: 10.1002/jss.400080309. [DOI] [PubMed] [Google Scholar]
- Torrisi M. R., Da Silva P. P. T-lymphocyte heterogeneity: wheat germ agglutinin labeling of transmembrane glycoproteins. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5671–5674. doi: 10.1073/pnas.79.18.5671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- da Silva P. P., Parkison C., Dwyer N. Freeze-fracture cytochemistry: thin sections of cells and tissues after labeling of fractures faces. J Histochem Cytochem. 1981 Aug;29(8):917–928. doi: 10.1177/29.8.7276536. [DOI] [PubMed] [Google Scholar]
- da Silva P. P., Torrisi M. R. Freeze-fracture cytochemistry: partition of glycophorin in freeze-fractured human erythrocyte membranes. J Cell Biol. 1982 May;93(2):463–469. doi: 10.1083/jcb.93.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]