Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):661–671. doi: 10.1083/jcb.99.2.661

Changes in distribution of nuclear matrix antigens during the mitotic cell cycle

PMCID: PMC2113259  PMID: 6378926

Abstract

We examined the distribution of nonlamin nuclear matrix antigens during the mitotic cell cycle in mouse 3T3 fibroblasts. Four monoclonal antibodies produced against isolated nuclear matrices were used to characterize antigens by the immunoblotting of isolated nuclear matrix preparations, and were used to localize the antigens by indirect immunofluorescence. For comparison, lamins and histones were localized using human autoimmune antibodies. At interphase, the monoclonal antibodies recognized non-nucleolar and nonheterochromatin nuclear components. Antibody P1 stained the nuclear periphery homogeneously, with some small invaginations toward the interior of the nucleus. Antibody I1 detected an antigen distributed as fine granules throughout the nuclear interior. Monoclonals PI1 and PI2 stained both the nuclear periphery and interior, with some characteristic differences. During mitosis, P1 and I1 were chromosome-associated, whereas PI1 and PI2 dispersed in the cytoplasm. Antibody P1 heavily stained the periphery of the chromosome mass, and we suggest that the antigen may play a role in maintaining interphase and mitotic chromosome order. With antibody I1, bright granules were distributed along the chromosomes and there was also some diffuse internal staining. The antigen to I1 may be involved in chromatin/chromosome higher-order organization throughout the cell cycle. Antibodies PI1 and PI2 were redistributed independently during prophase, and dispersed into the cytoplasm during prometaphase. Antibody PI2 also detected antigen associated with the spindle poles.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agard D. A., Sedat J. W. Three-dimensional architecture of a polytene nucleus. Nature. 1983 Apr 21;302(5910):676–681. doi: 10.1038/302676a0. [DOI] [PubMed] [Google Scholar]
  2. Bekers A. G., Gijzen H. J., Taalman R. D., Wanka F. Ultrastructure of the nuclear matrix from Physarum polycephalum during the mitotic cycle. J Ultrastruct Res. 1981 Jun;75(3):352–362. doi: 10.1016/s0022-5320(81)80091-3. [DOI] [PubMed] [Google Scholar]
  3. Benyajati C., Worcel A. Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell. 1976 Nov;9(3):393–407. doi: 10.1016/0092-8674(76)90084-2. [DOI] [PubMed] [Google Scholar]
  4. Brasch K. Age- and ploidy-related changes in rat liver nuclear proteins as assessed by one- and two-dimensional gel electrophoresis. Can J Biochem. 1982 Mar;60(3):204–214. doi: 10.1139/o82-025. [DOI] [PubMed] [Google Scholar]
  5. Brasch K., Seligy V. L., Setterfield G. Effects of low salt concentration on structural organization and template activity of chromatin in chicken erythrocyte nuclei. Exp Cell Res. 1971 Mar;65(1):61–72. doi: 10.1016/s0014-4827(71)80050-2. [DOI] [PubMed] [Google Scholar]
  6. Brasch K., Setterfield G. Structural organization of chromosomes in interphase nuclei. Exp Cell Res. 1974 Jan;83(1):175–185. doi: 10.1016/0014-4827(74)90701-0. [DOI] [PubMed] [Google Scholar]
  7. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  8. Capco D. G., Penman S. Mitotic architecture of the cell: the filament networks of the nucleus and cytoplasm. J Cell Biol. 1983 Mar;96(3):896–906. doi: 10.1083/jcb.96.3.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Capco D. G., Wan K. M., Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell. 1982 Jul;29(3):847–858. doi: 10.1016/0092-8674(82)90446-9. [DOI] [PubMed] [Google Scholar]
  10. Comings D. E. The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Hum Genet. 1968 Sep;20(5):440–460. [PMC free article] [PubMed] [Google Scholar]
  11. Detke S., Keller J. M. Comparison of the proteins present in HeLa cell interphase nucleoskeletons and metaphase chromosome scaffolds. J Biol Chem. 1982 Apr 10;257(7):3905–3911. [PubMed] [Google Scholar]
  12. Earnshaw W. C., Laemmli U. K. Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol. 1983 Jan;96(1):84–93. doi: 10.1083/jcb.96.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engelhardt P., Plagens U., Zbarsky I. B., Filatova L. S. Granules 25-30 nm in diameter: basic constituent of the nuclear matrix, chromosome scaffold, and nuclear envelope. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6937–6940. doi: 10.1073/pnas.79.22.6937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Forbes D. J., Kirschner M. W., Newport J. W. Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell. 1983 Aug;34(1):13–23. doi: 10.1016/0092-8674(83)90132-0. [DOI] [PubMed] [Google Scholar]
  15. Franke W. W., Scheer U., Krohne G., Jarasch E. D. The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol. 1981 Dec;91(3 Pt 2):39s–50s. doi: 10.1083/jcb.91.3.39s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gerace L., Blum A., Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol. 1978 Nov;79(2 Pt 1):546–566. doi: 10.1083/jcb.79.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henry S. M., Hodge L. D. Nuclear matrix: a cell-cycle-dependent site of increased intranuclear protein phosphorylation. Eur J Biochem. 1983 Jun 1;133(1):23–29. doi: 10.1111/j.1432-1033.1983.tb07425.x. [DOI] [PubMed] [Google Scholar]
  18. Hodge L. D., Mancini P., Davis F. M., Heywood P. Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle. J Cell Biol. 1977 Jan;72(1):194–208. doi: 10.1083/jcb.72.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jost E., Johnson R. T. New patterns of nuclear lamina induced by cell fusion. Eur J Cell Biol. 1983 May;30(2):295–304. [PubMed] [Google Scholar]
  20. Lydersen B. K., Pettijohn D. E. Human-specific nuclear protein that associates with the polar region of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell. 1980 Nov;22(2 Pt 2):489–499. doi: 10.1016/0092-8674(80)90359-1. [DOI] [PubMed] [Google Scholar]
  21. McKeon F. D., Tuffanelli D. L., Fukuyama K., Kirschner M. W. Autoimmune response directed against conserved determinants of nuclear envelope proteins in a patient with linear scleroderma. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4374–4378. doi: 10.1073/pnas.80.14.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McKeon F. D., Tuffanelli D. L., Kobayashi S., Kirschner M. W. The redistribution of a conserved nuclear envelope protein during the cell cycle suggests a pathway for chromosome condensation. Cell. 1984 Jan;36(1):83–92. doi: 10.1016/0092-8674(84)90076-x. [DOI] [PubMed] [Google Scholar]
  23. Paulson J. R. Isolation of chromosome clusters from metaphase-arrested HeLa cells. Chromosoma. 1982;85(4):571–581. doi: 10.1007/BF00327351. [DOI] [PubMed] [Google Scholar]
  24. Peters K. E., Okada T. A., Comings D. E. Chinese hamster nuclear proteins. An electrophoretic analysis of interphase, metaphase and nuclear matrix preparations. Eur J Biochem. 1982 Dec;129(1):221–232. doi: 10.1111/j.1432-1033.1982.tb07043.x. [DOI] [PubMed] [Google Scholar]
  25. Riley D. E., Keller J. M. Cell cycle-dependent changes in non-membranous nuclear ghosts from HeLa cells. J Cell Sci. 1978 Feb;29:129–146. doi: 10.1242/jcs.29.1.129. [DOI] [PubMed] [Google Scholar]
  26. Setterfield G., Hall R., Bladon T., Little J., Kaplan J. G. Changes in structure and composition of lymphocyte nuclei during mitogenic stimulation. J Ultrastruct Res. 1983 Mar;82(3):264–282. doi: 10.1016/s0022-5320(83)80014-8. [DOI] [PubMed] [Google Scholar]
  27. Song M. K., Adolph K. W. Phosphorylation of nonhistone proteins during the HeLa cell cycle. Relationship to DNA synthesis and mitotic chromosome condensation. J Biol Chem. 1983 Mar 10;258(5):3309–3318. [PubMed] [Google Scholar]
  28. Stick R., Schwarz H. Disappearance and reformation of the nuclear lamina structure during specific stages of meiosis in oocytes. Cell. 1983 Jul;33(3):949–958. doi: 10.1016/0092-8674(83)90038-7. [DOI] [PubMed] [Google Scholar]
  29. Stick R., Schwarz H. The disappearance of the nuclear lamina during spermatogenesis: an electron microscopic and immunofluorescence study. Cell Differ. 1982 Jun;11(4):235–243. doi: 10.1016/0045-6039(82)90071-9. [DOI] [PubMed] [Google Scholar]
  30. Turner B. M. Immunofluorescent staining of human metaphase chromosomes with monoclonal antibody to histone H2B. Chromosoma. 1982;87(3):345–357. doi: 10.1007/BF00327635. [DOI] [PubMed] [Google Scholar]
  31. Vogelstein B., Pardoll D. M., Coffey D. S. Supercoiled loops and eucaryotic DNA replicaton. Cell. 1980 Nov;22(1 Pt 1):79–85. doi: 10.1016/0092-8674(80)90156-7. [DOI] [PubMed] [Google Scholar]
  32. Wojtkowiak Z., Duhl D. M., Briggs R. C., Hnilica L. S., Stein J. L., Stein G. S. A nuclear matrix antigen HeLa and other human malignant cells. Cancer Res. 1982 Nov;42(11):4546–4552. [PubMed] [Google Scholar]
  33. van Eekelen C. A., Salden M. H., Habets W. J., van de Putte L. B., van Venrooij W. J. On the existence of an internal nuclear protein structure in HeLa cells. Exp Cell Res. 1982 Sep;141(1):181–190. doi: 10.1016/0014-4827(82)90080-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES