Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):390–402. doi: 10.1083/jcb.99.2.390

Thrombocytopoiesis--analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes

PMCID: PMC2113260  PMID: 6204991

Abstract

The origin of platelets (Pt) from megakaryocytes (MK) is beyond question, but the mechanism whereby Pts are released from the precursor cell is still debated. A widely-held theory claims that the MK plasma membrane invaginates to form demarcation membranes (DMS), which delineate Pt territories. Accordingly, Pts would be derived mostly from the periphery of the MK, and the MK and Pt plasma membranes would have to be virtually identical. Since, on morphologic grounds, this theory is untenable, several aspects of thrombocytopoiesis were reexamined with the help of membrane tracer and freeze-fracture analyses of freshly-collected human and cultured mouse MK. To our surprise, freeze- cleavage of the MK plasma membrane revealed that the vast majority of intramembranous particles (IMP) remained associated with the protoplasmic leaflet (P face), whereas the partition coefficient of IMPs of the platelet membrane was the reverse. This is the first time that any difference between MK and Pt membranes has been determined. Replicas of freeze-fractured MK that were in the process of thrombocytopoiesis revealed an additional novel phenomenon, i.e., numerous areas of membrane discontinuity that appeared to be related to Pt discharge. When such areas were small, the IMP were lined up along the margin of the crevice. At a later phase, a labyrinth of fenestrations was observed. Thin sections of MK at various stages of differentiation showed that Pt territories were fully demarcated before connections of the DMS with the surface could be found. Therefore, the Pt envelope is probably not derived from invaginations of the MK plasma membrane. When living, MK were incubated with cationic ferritin or peroxidase at 37 degrees C, the tracers entered into the DMS but did not delineate all membranes with which the DMS was in continuity, suggesting the existence of distinctive membrane domains. Interiorization of tracer was not energy-dependent, but arrested at low temperatures. At 4 degrees C the DMS remained empty, unless there was evidence that Pts had been released. In such instances, the tracers outlined infoldings of peripheral cytoplasm that was devoid of organelles. Thus, the majority of Pts seem to originate from the interior of the MK, and the surface membranes of the two cells differ in origin and structure. The observations do not only throw new light on the process of thrombocytopoiesis, but also strengthen the possibility that MKs and Pts may be subject to different stimuli.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBRECHT M. Studien zur Thrombocytenbildung an Megakaryocyten in menschlichen Knochenmarkkulturen. Acta Haematol. 1957 Mar;17(3):160–168. doi: 10.1159/000205240. [DOI] [PubMed] [Google Scholar]
  2. Becker R. P., De Bruyn P. P. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat. 1976 Feb;145(2):183–205. doi: 10.1002/aja.1001450204. [DOI] [PubMed] [Google Scholar]
  3. Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res. 1968 Sep;24(5):412–433. doi: 10.1016/s0022-5320(68)80046-2. [DOI] [PubMed] [Google Scholar]
  4. Behnke O. An electron microscope study of the rat megacaryocyte. II. Some aspects of platelet release and microtubules. J Ultrastruct Res. 1969 Jan;26(1):111–129. doi: 10.1016/s0022-5320(69)90039-2. [DOI] [PubMed] [Google Scholar]
  5. Breton-Gorius J. Development of two distinct membrane systems associated in giant complexes in pathological megakaryocytes. Ser Haematol. 1975;8(1):49–67. [PubMed] [Google Scholar]
  6. Chevalier J., Nurden A. T., Thiery J. M., Savariau E., Caen J. P. Freeze-fracture studies on the plasma membranes of normal human, thrombasthenic, and Bernard-Soulier platelets. J Lab Clin Med. 1979 Aug;94(2):232–245. [PubMed] [Google Scholar]
  7. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  8. Dexter T. M., Lajtha L. G. Proliferation of haemopoietic stem cells in vitro. Br J Haematol. 1974 Dec;28(4):525–530. doi: 10.1111/j.1365-2141.1974.tb06671.x. [DOI] [PubMed] [Google Scholar]
  9. Ebbe S., Phalen E., Stohlman F., Jr Abnormalities of megakaryocytes in W-WV mice. Blood. 1973 Dec;42(6):857–864. [PubMed] [Google Scholar]
  10. Farquhar M. G. Multiple pathways of exocytosis, endocytosis, and membrane recycling: validation of a Golgi route. Fed Proc. 1983 May 15;42(8):2407–2413. [PubMed] [Google Scholar]
  11. HERBEUVAL H., DUHEILLE J., CUNY G., GUERCI O. [Physiological megakaryocytemia]. C R Seances Soc Biol Fil. 1962;156:122–126. [PubMed] [Google Scholar]
  12. Hopkins C. R. The importance of the endosome in intracellular traffic. Nature. 1983 Aug 25;304(5928):684–685. doi: 10.1038/304684a0. [DOI] [PubMed] [Google Scholar]
  13. KAUFMAN R. M., AIRO R., POLLACK S., CROSBY W. H., DOBERNECK R. ORIGIN OF PULMONARY MEGAKARYOCYTES. Blood. 1965 May;25:767–775. [PubMed] [Google Scholar]
  14. Kaufman R. M., Airo R., Pollack S., Crosby W. H. Circulating megakaryocytes and platelet release in the lung. Blood. 1965 Dec;26(6):720–731. [PubMed] [Google Scholar]
  15. Maldonado J. E. Dysplastic platelets and circulating megakaryocytes in chronic myeloproliferative diseases. II. Ultrastructure of circulating megakaryocytes. Blood. 1974 Jun;43(6):811–820. [PubMed] [Google Scholar]
  16. Melamed M. R., Cliffton E. E., Mercer C., Koss L. G. The megakaryocyte blood count. Am J Med Sci. 1966 Sep;252(3):301–309. doi: 10.1097/00000441-196609000-00009. [DOI] [PubMed] [Google Scholar]
  17. Nagasawa T., Nakazawa M., Abe T. A liquid culture system for murine megakaryocyte progenitor cells. Blood. 1982 Feb;59(2):250–257. [PubMed] [Google Scholar]
  18. Nakao K., Angrist A. A. Membrane surface specialization of blood platelet and megakaryocyte. Nature. 1968 Mar 9;217(5132):960–961. doi: 10.1038/217960a0. [DOI] [PubMed] [Google Scholar]
  19. Paulus J. M., Bury J., Grosdent J. C. Control of platelet territory development in megakaryocytes. Blood Cells. 1979 Mar 23;5(1):59–88. [PubMed] [Google Scholar]
  20. Penington D. G., Streatfield K., Roxburgh A. E. Megakaryocytes and the heterogeneity of circulating platelets. Br J Haematol. 1976 Dec;34(4):639–653. doi: 10.1111/j.1365-2141.1976.tb03611.x. [DOI] [PubMed] [Google Scholar]
  21. Rabellino E. M., Levene R. B., Leung L. L., Nachman R. L. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J Exp Med. 1981 Jul 1;154(1):88–100. doi: 10.1084/jem.154.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rabellino E. M., Nachman R. L., Williams N., Winchester R. J., Ross G. D. Human megakaryocytes. I. Characterization of the membrane and cytoplasmic components of isolated marrow megakaryocytes. J Exp Med. 1979 Jun 1;149(6):1273–1287. doi: 10.1084/jem.149.6.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reddick R. L., Mason R. G. Freeze-etch observations on the plasma membrane and other structures of normal and abnormal platelets. Am J Pathol. 1973 Mar;70(3):473–488. [PMC free article] [PubMed] [Google Scholar]
  24. Shaklai M., Tavassoli M. Demarcation membrane system in rat megakaryocyte and the mechanism of platelet formation: a membrane reorganization process. J Ultrastruct Res. 1978 Mar;62(3):270–285. doi: 10.1016/s0022-5320(78)80023-9. [DOI] [PubMed] [Google Scholar]
  25. THIERY J. P., BESSIS M. La genèse des plaquettes sanguines à partir des mégacaryocytes observée sur la cellule vivante. C R Hebd Seances Acad Sci. 1956 Jan 9;242(2):290–292. [PubMed] [Google Scholar]
  26. THIERY J. P., BESSIS M. Mécanisme de la plaquettogénèse; etude in vitro par la microcinématographie. Rev Hematol. 1956 Apr-May;11(2):162–174. [PubMed] [Google Scholar]
  27. Thiele J., Ballard A. C., Georgii A., Vykoupil K. F. Chronic megakaryocytic-granulocytic myelosis--an electron microscopic study. I. Megakaryocytes and thrombocytes. Virchows Arch A Pathol Anat Histol. 1977 Apr 6;373(3):191–211. doi: 10.1007/BF00432237. [DOI] [PubMed] [Google Scholar]
  28. Trowbridge E. A., Martin J. F., Slater D. N. Evidence for a theory of physical fragmentation of megakaryocytes, implying that all platelets are produced in the pulmonary circulation. Thromb Res. 1982 Nov 15;28(4):461–475. doi: 10.1016/0049-3848(82)90163-3. [DOI] [PubMed] [Google Scholar]
  29. VAZQUEZ J. J., LEWIS J. H. Immunocytochemical studies on platelets. The demonstration of a common antigen in human platelets and megakaryocytes. Blood. 1960 Jul;16:968–974. [PubMed] [Google Scholar]
  30. Worthington R. E., Nakeff A. Thromboxane synthesis in megakaryocytes isolated by centrifugal elutriation. Blood. 1981 Jul;58(1):175–178. [PubMed] [Google Scholar]
  31. YAMADA E. The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel) 1957;29(3):267–290. doi: 10.1159/000141169. [DOI] [PubMed] [Google Scholar]
  32. Zucker-Franklin D. Endocytosis by human platelets: metabolic and freeze-fracture studies. J Cell Biol. 1981 Dec;91(3 Pt 1):706–715. doi: 10.1083/jcb.91.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zucker-Franklin D. The submembranous fibrils of human blood platelets. J Cell Biol. 1970 Oct;47(1):293–299. doi: 10.1083/jcb.47.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES