Abstract
Highly enriched Golgi complex and endoplasmic reticulum fractions were isolated from total microsomes obtained from Trypanosoma brucei, Trypanosoma congolense, and Trypanosoma vivax, and tested for glycosyltransferase activity. Purity of the fractions was assessed by electron microscopy as well as by biochemical analysis. The relative distribution of all the glycosyltransferases was remarkably similar for the three species of African trypanosomes studied. The Golgi complex fraction contained most of the galactosyltransferase activity followed by the smooth and rough endoplasmic reticulum fractions. The dolichol- dependent mannosyltransferase activities were highest for the rough endoplasmic reticulum, lower for the smooth endoplasmic reticulum, and lowest for the Golgi complex. Although the dolichol-independent form of N-acetylglucosaminyltransferase was essentially similar in all the fractions, the dolichol-dependent form of this enzyme was much higher in the endoplasmic reticulum fractions than in the Golgi complex fraction. Inhibition of this latter activity in the smooth endoplasmic reticulum fraction by tunicamycin A1 suggests that core glycosylation of the variable surface glycoprotein may occur in this organelle and not in the rough endoplasmic reticulum as previously assumed.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbet A. F., McGuire T. C. Crossreacting determinants in variant-specific surface antigens of African trypanosomes. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1989–1993. doi: 10.1073/pnas.75.4.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergeron J. J., Rachubinski R. A., Sikstrom R. A., Posner B. I., Paiement J. Galactose transfer to endogenous acceptors within Golgi fractions of rat liver. J Cell Biol. 1982 Jan;92(1):139–146. doi: 10.1083/jcb.92.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brett C. T., Voorheis H. P. Glycoproten biosynthesis in Trypanosoma brucei. The glycosylation of Glycoproteins located in and attached to the plasma membrane. Eur J Biochem. 1980 Aug;109(1):139–150. doi: 10.1111/j.1432-1033.1980.tb04778.x. [DOI] [PubMed] [Google Scholar]
- Cross G. A. Antigenic variation in trypanosomes. Proc R Soc Lond B Biol Sci. 1978 Jun 5;202(1146):55–72. doi: 10.1098/rspb.1978.0057. [DOI] [PubMed] [Google Scholar]
- Cross G. A. Crossreacting determinants in the C-terminal region of trypanosome variant surface antigens. Nature. 1979 Jan 25;277(5694):310–312. doi: 10.1038/277310a0. [DOI] [PubMed] [Google Scholar]
- Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
- Cross G. A. Immunochemical aspects of antigenic variation on trypanosomes. The third Fleming Lecture. J Gen Microbiol. 1979 Jul;113(1):1–11. doi: 10.1099/00221287-113-1-1. [DOI] [PubMed] [Google Scholar]
- Duvillier G., Nouvelot A., Richet C., Baltz T., Degand P. Presence of glycerol and fatty acids in the C-terminal end of a variant surface glycoprotein from Trypanosoma equiperdum. Biochem Biophys Res Commun. 1983 Jul 18;114(1):119–125. doi: 10.1016/0006-291x(83)91602-9. [DOI] [PubMed] [Google Scholar]
- Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grab D. J., Bwayo J. J. Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Trop. 1982 Dec;39(4):363–366. [PubMed] [Google Scholar]
- Gray A. R. Some principles of the immunology of trypanosomiasis. Bull World Health Organ. 1967;37(2):177–193. [PMC free article] [PubMed] [Google Scholar]
- Holder A. A. Carbohydrate is linked through ethanolamine to the C-terminal amino acid of Trypanosoma brucei variant surface glycoprotein. Biochem J. 1983 Jan 1;209(1):261–262. doi: 10.1042/bj2090261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holder A. A., Cross G. A. Glycopeptides from variant surface glycoproteins of Trypanosoma Brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties. Mol Biochem Parasitol. 1981 Feb;2(3-4):135–150. doi: 10.1016/0166-6851(81)90095-5. [DOI] [PubMed] [Google Scholar]
- Howell K. E., Ito A., Palade G. E. Endoplasmic reticulum marker enzymes in Golgi fractions--what does this mean? J Cell Biol. 1978 Nov;79(2 Pt 1):581–589. doi: 10.1083/jcb.79.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. G., Cross G. A. Carbohydrate composition of variant-specific surface antigen glycoproteins from Trypanosoma brucei. J Protozool. 1977 Nov;24(4):587–591. doi: 10.1111/j.1550-7408.1977.tb01020.x. [DOI] [PubMed] [Google Scholar]
- Langreth S. G., Balber A. E. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. J Protozool. 1975 Feb;22(1):40–53. doi: 10.1111/j.1550-7408.1975.tb00943.x. [DOI] [PubMed] [Google Scholar]
- Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
- Mahoney W. C., Duksin D. Biological activities of the two major components of tunicamycin. J Biol Chem. 1979 Jul 25;254(14):6572–6576. [PubMed] [Google Scholar]
- Mahoney W. C., Duksin D. Separation of tunicamycin homologues by reversed-phase high-performance liquid chromatography. J Chromatogr. 1980 Oct 24;198(4):506–510. doi: 10.1016/s0021-9673(00)80521-x. [DOI] [PubMed] [Google Scholar]
- McConnell J., Cordingley J. S., Turner M. J. The biosynthesis of Trypanosoma brucei variant surface glycoproteins--in vitro processing of signal peptide and glycosylation using heterologous rough endoplasmic reticulum vesicles. Mol Biochem Parasitol. 1982 Sep;6(3):161–174. doi: 10.1016/0166-6851(82)90075-5. [DOI] [PubMed] [Google Scholar]
- McConnell J., Gurnett A. M., Cordingley J. S., Walker J. E., Turner M. J. Biosynthesis of Trypanosoma brucei variant surface glycoprotein. I. Synthesis, size, and processing of an N-terminal signal peptide. Mol Biochem Parasitol. 1981 Dec;4(3-4):225–242. doi: 10.1016/0166-6851(81)90021-9. [DOI] [PubMed] [Google Scholar]
- McConnell J., Turner M., Rovis L. Biosynthesis of Trypanosoma brucei variant surface glycoproteins - analysis of carbohydrate heterogeneity and timing of post-translational modifications. Mol Biochem Parasitol. 1983 Jun;8(2):119–135. doi: 10.1016/0166-6851(83)90004-x. [DOI] [PubMed] [Google Scholar]
- Oduro K. K., Flynn I. W., Bowman I. B. Trypanosoma brucei: activities and subcellular distribution of glycolytic enzymes from differently disrupted cells. Exp Parasitol. 1980 Aug;50(1):123–135. doi: 10.1016/0014-4894(80)90014-4. [DOI] [PubMed] [Google Scholar]
- Opperdoes F. R., Borst P., Bakker S., Leene W. Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD+-linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form to Trypanosoma brucei. Eur J Biochem. 1977 Jun 1;76(1):29–39. doi: 10.1111/j.1432-1033.1977.tb11567.x. [DOI] [PubMed] [Google Scholar]
- Polacheck I., Cabib E. A simple procedure for protein determination by the Lowry method in dilute solutions and in the presence of interfering substances. Anal Biochem. 1981 Nov 1;117(2):311–314. doi: 10.1016/0003-2697(81)90784-3. [DOI] [PubMed] [Google Scholar]
- Ragland W. L., Shires T. K., Pitot H. C. Polyribosomal attachment to rat liver and hepatoma endoplasmic reticulum in vitro. A method for its study. Biochem J. 1971 Jan;121(2):271–278. doi: 10.1042/bj1210271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rovis L., Baekkeskov S. Sub-cellular fractionation of Trypanosoma brucei. Isolation and characterization of plasma membranes. Parasitology. 1980 Jun;80(3):507–524. doi: 10.1017/s0031182000000974. [DOI] [PubMed] [Google Scholar]
- Rovis L., Dube D. K. Studies on the biosynthesis of the variant surface glycoproteins of Trypanosoma brucei: sequence of glycosylation. Mol Biochem Parasitol. 1981 Nov;4(1-2):77–93. doi: 10.1016/0166-6851(81)90031-1. [DOI] [PubMed] [Google Scholar]
- Rovis L., Dube S. Identification and characterisation of two N-acetylglucosaminyltransferases associated with Trypanosoma Brucei microsomes. Mol Biochem Parasitol. 1982 Mar;5(3):173–187. doi: 10.1016/0166-6851(82)90019-6. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Siekevitz P., Zamecnik P. C. Ribosomes and protein synthesis. J Cell Biol. 1981 Dec;91(3 Pt 2):53s–65s. doi: 10.1083/jcb.91.3.53s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiger R. F., Opperdoes F. R., Bontemps J. Subcellular fractionation of Trypanosoma brucei bloodstream forms with special reference to hydrolases. Eur J Biochem. 1980 Mar;105(1):163–175. doi: 10.1111/j.1432-1033.1980.tb04486.x. [DOI] [PubMed] [Google Scholar]
- Strickler J. E., Patton C. L. Trypanosoma brucei brucei: inhibition of glycosylation of the major variable surface coat glycoprotein by tunicamycin. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1529–1533. doi: 10.1073/pnas.77.3.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tovey K. C., Oldham K. G., Whelan J. A. A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin Chim Acta. 1974 Nov 8;56(3):221–234. doi: 10.1016/0009-8981(74)90133-8. [DOI] [PubMed] [Google Scholar]
- Tulkens P., Beaufay H., Trouet A. Analytical fractionation of homogenates from cultured rat embryo fibroblasts. J Cell Biol. 1974 Nov;63(2 Pt 1):383–401. doi: 10.1083/jcb.63.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vickerman K., Luckins A. G. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature. 1969 Dec 13;224(5224):1125–1126. doi: 10.1038/2241125a0. [DOI] [PubMed] [Google Scholar]
- Walter R. D., Opperdoes F. R. Subcellular distribution of adenylate cyclase, cyclic-AMP phosphodiesterase, protein kinases and phosphoprotein phosphatase in Trypanosoma brucei. Mol Biochem Parasitol. 1982 Nov;6(5):287–295. doi: 10.1016/0166-6851(82)90061-5. [DOI] [PubMed] [Google Scholar]
- Whitaker J. R., Granum P. E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal Biochem. 1980 Nov 15;109(1):156–159. doi: 10.1016/0003-2697(80)90024-x. [DOI] [PubMed] [Google Scholar]
