Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):435–444. doi: 10.1083/jcb.99.2.435

Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes

PMCID: PMC2113269  PMID: 6746735

Abstract

Sequestration of the inert cytosolic marker [14C]sucrose by sedimentable organelles was measured in isolated rat hepatocytes made transiently permeable to sucrose by means of electropermeabilization. Lysosomal integrity, protein degradation, autophagic sequestration, and other cellular functions were not significantly impaired by the electric treatment. Hepatocytes sequestered sucrose at an initial rate of approximately 10%/h, which is threefold higher than the estimated rate of autophagic-lysosomal protein degradation. Almost one-third would appear to represent mitochondrial fluid uptake; the rest was nearly completely and specifically inhibited by 3-methyladenine (3MA) and can be regarded as autophagic sequestration. A complete amino acid mixture was somewhat less inhibitory than 3MA, and partially antagonized the effect of the latter. This paradoxical effect, taken together with the high sequestration rate, may suggest heterogeneity as well as selectivity in autophagic sequestration. There was no detectable recycling of sequestered [14C]sucrose between organelles and cytosol. Studies of individual amino acids revealed histidine as the most effective sequestration inhibitor. Leucine may have a regulatory function, as indicated by its unique additive/synergistic effect, and a combination of Leu + His was as effective as the complete amino acid mixture. Asparagine inhibited sequestration only 20%, i.e., its very strong effect on overall (long-lived) protein degradation must partially be due to post-sequestrational inhibition. The lysosomal (amine-sensitive) degradation of short-lived protein was incompletely inhibited by 3MA, indicating a contribution from nonautophagic processes like crinophagy and endocytic membrane influx. The ability of an amino acid mixture to specifically antagonize the inhibition of short-lived protein degradation by AsN + GIN (but not by 3MA) may suggest complex amino acid interactions at the level of fusion between lysosomes and other vesicles in addition to the equally complex interactions at the level of autophagic sequestration.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amenta J. S., Sargus M. J., Baccino F. M. Effect of microtubular or translational inhibitors on general cell protein degradation. Evidence for a dual catabolic pathway. Biochem J. 1977 Nov 15;168(2):223–227. doi: 10.1042/bj1680223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Backer J. M., Bourret L., Dice J. F. Regulation of catabolism of microinjected ribonuclease A requires the amino-terminal 20 amino acids. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2166–2170. doi: 10.1073/pnas.80.8.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandler C. S., Ballard F. J. Inhibition of pyruvate carboxylase degradation and total protein breakdown by lysosomotropic agents in 3T3-L1 cells. Biochem J. 1983 Mar 15;210(3):845–853. doi: 10.1042/bj2100845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cockle S. M., Dean R. T. The regulation of proteolysis in normal fibroblasts as they approach confluence. Evidence for the participation of the lysosomal system. Biochem J. 1982 Dec 15;208(3):795–800. doi: 10.1042/bj2080795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desautels M., Goldberg A. L. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1869–1873. doi: 10.1073/pnas.79.6.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Freikopf-Cassel A., Kulka R. G. Regulation of the degradation of 125 I-labeled glutamine synthetase introduced into cultured hepatoma cells by erythrocyte ghost-mediated injection. FEBS Lett. 1981 Jun 1;128(1):63–66. doi: 10.1016/0014-5793(81)81080-0. [DOI] [PubMed] [Google Scholar]
  8. Glaumann H., Ericsson J. L., Marzella L. Mechanisms of intralysosomal degradation with special reference to autophagocytosis and heterophagocytosis of cell organelles. Int Rev Cytol. 1981;73:149–182. doi: 10.1016/s0074-7696(08)61288-7. [DOI] [PubMed] [Google Scholar]
  9. Gordon P. B., Seglen P. O. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Exp Cell Res. 1982 Nov;142(1):1–14. doi: 10.1016/0014-4827(82)90402-5. [DOI] [PubMed] [Google Scholar]
  10. Hendil K. B. Autophagy of metabolically inert substances injected into fibroblasts in culture. Exp Cell Res. 1981 Sep;135(1):157–166. doi: 10.1016/0014-4827(81)90308-6. [DOI] [PubMed] [Google Scholar]
  11. Hershko A., Eytan E., Ciechanover A., Haas A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J Biol Chem. 1982 Dec 10;257(23):13964–13970. [PubMed] [Google Scholar]
  12. Kovács A. L., Grinde B., Seglen P. O. Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp Cell Res. 1981 Jun;133(2):431–436. doi: 10.1016/0014-4827(81)90336-0. [DOI] [PubMed] [Google Scholar]
  13. Langner J., Kirschke H., Bohley P., Wiederanders B., Korant B. D. The ribosomal serine proteinase, cathepsin R. Occurrence in rat-liver ribosomes in a cryptic form. Eur J Biochem. 1982 Jun 15;125(1):21–26. doi: 10.1111/j.1432-1033.1982.tb06645.x. [DOI] [PubMed] [Google Scholar]
  14. Okada C. Y., Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell. 1982 May;29(1):33–41. doi: 10.1016/0092-8674(82)90087-3. [DOI] [PubMed] [Google Scholar]
  15. Pfeifer U. Lysosomen und Autophagie. Verh Dtsch Ges Pathol. 1976:28–64. [PubMed] [Google Scholar]
  16. Poli A., Gordon P. B., Schwarze P. E., Grinde B., Seglen P. O. Effects of insulin and anchorage on hepatocytic protein metabolism and amino acid transport. J Cell Sci. 1981 Apr;48:1–18. doi: 10.1242/jcs.48.1.1. [DOI] [PubMed] [Google Scholar]
  17. Pösö A. R., Schworer C. M., Mortimore G. E. Acceleration of proteolysis in perfused rat liver by deletion of glucogenic amino acids: regulatory role of glutamine. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1433–1439. doi: 10.1016/s0006-291x(82)80159-9. [DOI] [PubMed] [Google Scholar]
  18. Pösö A. R., Wert J. J., Jr, Mortimore G. E. Multifunctional control of amino acids of deprivation-induced proteolysis in liver. Role of leucine. J Biol Chem. 1982 Oct 25;257(20):12114–12120. [PubMed] [Google Scholar]
  19. Rémésey C., Demigné C., Aufrère J. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J. 1978 Feb 15;170(2):321–329. doi: 10.1042/bj1700321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwarze P. E., Seglen P. O. Paradoxical stimulation by amino acids of the degradation of [35S]methionine-labelled, short-lived protein in isolated rat hepatocytes. Biochem Biophys Res Commun. 1983 Dec 16;117(2):509–516. doi: 10.1016/0006-291x(83)91229-9. [DOI] [PubMed] [Google Scholar]
  21. Schwarze P. E., Seglen P. O. Protein metabolism and survival of rat hepatocytes in early culture. Exp Cell Res. 1980 Nov;130(1):185–190. doi: 10.1016/0014-4827(80)90055-5. [DOI] [PubMed] [Google Scholar]
  22. Schwarze P. E., Solheim A. E., Seglen P. O. Amino acid and energy requirements for rat hepatocytes in primary culture. In Vitro. 1982 Jan;18(1):43–54. doi: 10.1007/BF02796384. [DOI] [PubMed] [Google Scholar]
  23. Schworer C. M., Mortimore G. E. Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3169–3173. doi: 10.1073/pnas.76.7.3169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seglen P. O. Effects of amino acids, ammonia and leupeptin on protein synthesis and degradation in isolated rat hepatocytes. Biochem J. 1978 Aug 15;174(2):469–474. doi: 10.1042/bj1740469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seglen P. O., Gordon P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889–1892. doi: 10.1073/pnas.79.6.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seglen P. O., Gordon P. B., Grinde B., Solheim A., Kovács A. L., Poli A. Inhibitors and pathways of hepatocytic protein degradation. Acta Biol Med Ger. 1981;40(10-11):1587–1598. [PubMed] [Google Scholar]
  27. Seglen P. O., Gordon P. B., Poli A. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1980 Jun 5;630(1):103–118. doi: 10.1016/0304-4165(80)90141-5. [DOI] [PubMed] [Google Scholar]
  28. Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
  29. Seglen P. O. Inhibitor of protein degradation formed during incubation of isolated rat hepatocytes in a cell culture medium. Its identification as ammonia. Exp Cell Res. 1977 Jun;107(1):207–217. doi: 10.1016/0014-4827(77)90402-5. [DOI] [PubMed] [Google Scholar]
  30. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  31. Solheim A. E., Seglen P. O. Structural and physical changes in lysosomes from isolated rat hepatocytes treated with methylamine. Biochim Biophys Acta. 1983 Oct 25;763(3):284–291. doi: 10.1016/0167-4889(83)90136-2. [DOI] [PubMed] [Google Scholar]
  32. Sparkuhl J., Sheinin R. Protein synthesis and degradation during expression of the temperature-sensitive defect in ts A1S9 mouse L-cells. J Cell Physiol. 1980 Nov;105(2):247–258. doi: 10.1002/jcp.1041050208. [DOI] [PubMed] [Google Scholar]
  33. Tolleshaug H., Gordon P. B., Solheim A. E., Seglen P. O. Trapping of electro-injected [14C]sucrose by hepatocyte mitochondria: a mechanism for cellular autofiltration? Biochem Biophys Res Commun. 1984 Mar 30;119(3):955–961. doi: 10.1016/0006-291x(84)90866-0. [DOI] [PubMed] [Google Scholar]
  34. Zavortink M., Thacher T., Rechsteiner M. Degradation of proteins microinjected into cultured mammalian cells. J Cell Physiol. 1979 Jul;100(1):175–185. doi: 10.1002/jcp.1041000118. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES