Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):607–614. doi: 10.1083/jcb.99.2.607

Fetal bovine bone cells synthesize bone-specific matrix proteins

PMCID: PMC2113278  PMID: 6086672

Abstract

We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglycan, and the bone sialoprotein) and against type 1 collagen. In separate experiments, confluent cultures of the cells were radiolabeled and shown to synthesize and secrete osteonectin, the bone proteoglycan and the bone sialoprotein by immunoprecipitation and fluorography of SDS polyacrylamide gels. Analysis of the radiolabeled collagens synthesized by the cultures showed that they produced predominantly (approximately 94%) type I collagen, with small amounts of types III and V collagens. In agreement with previous investigators who have employed the rodent bone cell system, we confirmed in bovine bone cells that (a) there was a typical cyclic AMP response to parathyroid hormone, (b) freshly isolated cells possessed high levels of alkaline phosphatase, which diminished during culture but returned to normal levels in mineralizing cultures, and (c) cells grown in the presence of ascorbic acid and beta-glycerophosphate rapidly produced and mineralized an extracellular matrix containing largely type I collagen. These results show that antibodies directed against bone-specific, noncollagenous proteins can be used to clearly identify bone cells in vitro.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binderman I., Duksin D., Harell A., Katzir E., Sachs L. Formation of bone tissue in culture from isolated bone cells. J Cell Biol. 1974 May;61(2):427–439. doi: 10.1083/jcb.61.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Deutsch D., El-Attar I., Robinson C., Weatherell J. A. Rate and timing of enamel development in the deciduous bovine incisor. Arch Oral Biol. 1979;24(6):407–413. doi: 10.1016/0003-9969(79)90001-3. [DOI] [PubMed] [Google Scholar]
  4. Dunlap M. K. Cyclic AMP levels in migrating and non-migrating newt epidermal cells. J Cell Physiol. 1980 Sep;104(3):367–373. doi: 10.1002/jcp.1041040310. [DOI] [PubMed] [Google Scholar]
  5. Ecarot-Charrier B., Glorieux F. H., van der Rest M., Pereira G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983 Mar;96(3):639–643. doi: 10.1083/jcb.96.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher L. W., Termine J. D., Dejter S. W., Jr, Whitson S. W., Yanagishita M., Kimura J. H., Hascall V. C., Kleinman H. K., Hassell J. R., Nilsson B. Proteoglycans of developing bone. J Biol Chem. 1983 May 25;258(10):6588–6594. [PubMed] [Google Scholar]
  7. Fisher L. W., Whitson S. W., Avioli L. V., Termine J. D. Matrix sialoprotein of developing bone. J Biol Chem. 1983 Oct 25;258(20):12723–12727. [PubMed] [Google Scholar]
  8. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harell A., Binderman I., Guez M. Tissue culture of bone cells: mineral transport, calcification and hormonal effects. Isr J Med Sci. 1976 Feb;12(2):115–123. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Nishimoto S. K., Price P. A. Secretion of the vitamin K-dependent protein of bone by rat osteosarcoma cells. Evidence for an intracellular precursor. J Biol Chem. 1980 Jul 25;255(14):6579–6583. [PubMed] [Google Scholar]
  12. PECK W. A., BIRGE S. J., Jr, FEDAK S. A. BONE CELLS: BIOCHEMICAL AND BIOLOGICAL STUDIES AFTER ENZYMATIC ISOLATION. Science. 1964 Dec 11;146(3650):1476–1477. doi: 10.1126/science.146.3650.1476. [DOI] [PubMed] [Google Scholar]
  13. Peck W. A., Carpenter J., Messinger K., DeBra D. Cyclic 3'5'-adenosine monophosphate in isolated bone cells. Response to low concentrations of parathyroid hormone. Endocrinology. 1973 Mar;92(3):692–697. doi: 10.1210/endo-92-3-692. [DOI] [PubMed] [Google Scholar]
  14. Price P. A., Lothringer J. W., Baukol S. A., Reddi A. H. Developmental appearance of the vitamin K-dependent protein of bone during calcification. Analysis of mineralizing tissues in human, calf, and rat. J Biol Chem. 1981 Apr 25;256(8):3781–3784. [PubMed] [Google Scholar]
  15. Price P. A., Lothringer J. W., Nishimoto S. K. Absence of the vitamin K-dependent bone protein in fetal rat mineral. Evidence for another gamma-carboxyglutamic acid-containing component in bone. J Biol Chem. 1980 Apr 10;255(7):2938–2942. [PubMed] [Google Scholar]
  16. Scott D. M., Kent G. N., Cohn D. V. Collagen synthesis in cultured osteoblast-like cells. Arch Biochem Biophys. 1980 May;201(2):384–391. doi: 10.1016/0003-9861(80)90526-3. [DOI] [PubMed] [Google Scholar]
  17. Sudo H., Kodama H. A., Amagai Y., Yamamoto S., Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 1983 Jan;96(1):191–198. doi: 10.1083/jcb.96.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sykes B., Puddle B., Francis M., Smith R. The estimation of two collagens from human dermis by interrupted gel electrophoresis. Biochem Biophys Res Commun. 1976 Oct 18;72(4):1472–1480. doi: 10.1016/s0006-291x(76)80180-5. [DOI] [PubMed] [Google Scholar]
  19. Tenenbaum H. C., Heersche J. N. Differentiation of osteoblasts and formation of mineralized bone in vitro. Calcif Tissue Int. 1982 Jan;34(1):76–79. doi: 10.1007/BF02411212. [DOI] [PubMed] [Google Scholar]
  20. Termine J. D., Belcourt A. B., Conn K. M., Kleinman H. K. Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem. 1981 Oct 25;256(20):10403–10408. [PubMed] [Google Scholar]
  21. Termine J. D., Eanes E. D., Greenfield D. J., Nylen M. U., Harper R. A. Hydrazine-deproteinated bone mineral. Physical and chemical properties. Calcif Tissue Res. 1973;12(1):73–90. doi: 10.1007/BF02013723. [DOI] [PubMed] [Google Scholar]
  22. Termine J. D., Kleinman H. K., Whitson S. W., Conn K. M., McGarvey M. L., Martin G. R. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981 Oct;26(1 Pt 1):99–105. doi: 10.1016/0092-8674(81)90037-4. [DOI] [PubMed] [Google Scholar]
  23. Wiestner M., Fischer S., Dessau W., Müller P. K. Collagen types synthesized by isolated calvarium cells. Exp Cell Res. 1981 May;133(1):115–125. doi: 10.1016/0014-4827(81)90362-1. [DOI] [PubMed] [Google Scholar]
  24. Williams D. C., Boder G. B., Toomey R. E., Paul D. C., Hillman C. C., Jr, King K. L., Van Frank R. M., Johnston C. C., Jr Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int. 1980;30(3):233–246. doi: 10.1007/BF02408633. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES