Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Aug 1;99(2):453–463. doi: 10.1083/jcb.99.2.453

Gap junction connexon configuration in rapidly frozen myocardium and isolated intercalated disks

PMCID: PMC2113286  PMID: 6086670

Abstract

By using two ultrarapid freezing techniques, we have captured the structure of rat and rabbit cardiac gap junctions in a condition closer to that existing in vivo than to that previously achieved. Our results, which include those from fully functional hearts frozen in situ in the living animal, show that the junctions characteristically consist of multiple small hexagonal arrays of connexons. In tissue frozen 10 min after animal death, however, unordered arrays are common. Examination of junction structure at intervals up to 40 min after death reveals a variety of configurations including dispersed and close-packed unordered arrays, and hexagonal arrays. By use of an isolated intercalated disk preparation, we show that the configuration of cardiac gap junctions in vitro cannot be altered by factors normally considered to induce functional uncoupling. These experiments demonstrate that, contrary to the conclusions of some earlier studies (Baldwin, K. M., 1979, J. Cell Biol., 82:66-75; Peracchia, C., and L. L. Peracchia, 1980, J. Cell Biol., 87:708-718), the arrangement of gap junction connexons, in cardiac tissue at least, cannot be used as a reliable guide to the functional state of the junctions.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashraf M., Halverson C. Ultrastructural modifications of nexuses (gap junctions) during early myocardial ischemia. J Mol Cell Cardiol. 1978 Mar;10(3):263–269. doi: 10.1016/0022-2828(78)90348-6. [DOI] [PubMed] [Google Scholar]
  2. Baldwin K. M. Cardiac gap junction configuration after an uncoupling treatment as a function of time. J Cell Biol. 1979 Jul;82(1):66–75. doi: 10.1083/jcb.82.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. V. Function of electrotonic junctions in embryonic and adult tissues. Fed Proc. 1973 Jan;32(1):65–75. [PubMed] [Google Scholar]
  4. Burt J. M., Frank J. S., Berns M. W. Permeability and structural studies of heart cell gap junctions under normal and altered ionic conditions. J Membr Biol. 1982;68(3):227–238. doi: 10.1007/BF01872267. [DOI] [PubMed] [Google Scholar]
  5. Chalcroft J. P., Bullivant S. An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol. 1970 Oct;47(1):49–60. doi: 10.1083/jcb.47.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dahl G., Isenberg G. Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol. 1980 Mar 31;53(1):63–75. doi: 10.1007/BF01871173. [DOI] [PubMed] [Google Scholar]
  7. De Mello W. C. Intercellular communication in cardiac muscle. Circ Res. 1982 Jul;51(1):1–9. doi: 10.1161/01.res.51.1.1. [DOI] [PubMed] [Google Scholar]
  8. Dempsey G. P., Bullivant S. A copper block method for freezing non-cryoprotected tissue to produce ice-crystal-free regions for electron microscopy. II. Evaluation using freeze fracturing with a cryo-ultramicrotome. J Microsc. 1976 Apr;106(3):261–271. doi: 10.1111/j.1365-2818.1976.tb02406.x. [DOI] [PubMed] [Google Scholar]
  9. Délèze J., Hervé J. C. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart. J Membr Biol. 1983;74(3):203–215. doi: 10.1007/BF02332124. [DOI] [PubMed] [Google Scholar]
  10. Elder H. Y., Gray C. C., Jardine A. G., Chapman J. N., Biddlecombe W. H. Optimum conditions for cryoquenching of small tissue blocks in liquid coolants. J Microsc. 1982 Apr;126(Pt 1):45–61. doi: 10.1111/j.1365-2818.1982.tb00356.x. [DOI] [PubMed] [Google Scholar]
  11. Goodenough D. A. Gap junction dynamics and intercellular communication. Pharmacol Rev. 1978 Dec;30(4):383–392. [PubMed] [Google Scholar]
  12. Green C. R., Severs N. J. A simplified method for the rapid isolation of cardiac intercalated discs. Tissue Cell. 1983;15(1):17–26. doi: 10.1016/0040-8166(83)90030-7. [DOI] [PubMed] [Google Scholar]
  13. Hertzberg E. L., Anderson D. J., Friedlander M., Gilula N. B. Comparative analysis of the major polypeptides from liver gap junctions and lens fiber junctions. J Cell Biol. 1982 Jan;92(1):53–59. doi: 10.1083/jcb.92.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kistler J., Bullivant S. The connexon order in isolated lens gap junctions. J Ultrastruct Res. 1980 Jul;72(1):27–38. doi: 10.1016/s0022-5320(80)90132-x. [DOI] [PubMed] [Google Scholar]
  16. Lee W. M., Cran D. G., Lane N. J. Carbon dioxide induced disassembly of gap-junctional plaques. J Cell Sci. 1982 Oct;57:215–228. doi: 10.1242/jcs.57.1.215. [DOI] [PubMed] [Google Scholar]
  17. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  18. Meda P., Findlay I., Kolod E., Orci L., Petersen O. H. Short and reversible uncoupling evokes little change in the gap junctions of pancreatic acinar cells. J Ultrastruct Res. 1983 Apr;83(1):69–84. doi: 10.1016/s0022-5320(83)90066-7. [DOI] [PubMed] [Google Scholar]
  19. Meyer D. J., Yancey S. B., Revel J. P. Intercellular communication in normal and regenerating rat liver: a quantitative analysis. J Cell Biol. 1981 Nov;91(2 Pt 1):505–523. doi: 10.1083/jcb.91.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Müller M., Meister N., Moor H. Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie. 1980 Sep;36(5-6):129–140. [PubMed] [Google Scholar]
  21. Page E., Karrison T., Upshaw-Earley J. Freeze-fractured cardiac gap junctions: structural analysis by three methods. Am J Physiol. 1983 Apr;244(4):H525–H539. doi: 10.1152/ajpheart.1983.244.4.H525. [DOI] [PubMed] [Google Scholar]
  22. Page E., Shibata Y. Permeable junctions between cardiac cells. Annu Rev Physiol. 1981;43:431–441. doi: 10.1146/annurev.ph.43.030181.002243. [DOI] [PubMed] [Google Scholar]
  23. Peracchia C. Calcium effects on gap junction structure and cell coupling. Nature. 1978 Feb 16;271(5646):669–671. doi: 10.1038/271669a0. [DOI] [PubMed] [Google Scholar]
  24. Peracchia C., Dulhunty A. F. Low resistance junctions in crayfish. Structural changes with functional uncoupling. J Cell Biol. 1976 Aug;70(2 Pt 1):419–439. doi: 10.1083/jcb.70.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peracchia C. Gap junctions. Structural changes after uncoupling procedures. J Cell Biol. 1977 Mar;72(3):628–641. doi: 10.1083/jcb.72.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of divalent cations. J Cell Biol. 1980 Dec;87(3 Pt 1):708–718. doi: 10.1083/jcb.87.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol. 1980 Dec;87(3 Pt 1):719–727. doi: 10.1083/jcb.87.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peracchia C. Structural correlates of gap junction permeation. Int Rev Cytol. 1980;66:81–146. doi: 10.1016/s0074-7696(08)61972-5. [DOI] [PubMed] [Google Scholar]
  29. Plattner H., Bachmann L. Cryofixation: a tool in biological ultrastructural research. Int Rev Cytol. 1982;79:237–304. doi: 10.1016/s0074-7696(08)61676-9. [DOI] [PubMed] [Google Scholar]
  30. Raviola E., Goodenough D. A., Raviola G. Structure of rapidly frozen gap junctions. J Cell Biol. 1980 Oct;87(1):273–279. doi: 10.1083/jcb.87.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Severs N. J. Intercellular junctions and the cardiac intercalated disk. Adv Myocardiol. 1985;5:223–242. doi: 10.1007/978-1-4757-1287-2_18. [DOI] [PubMed] [Google Scholar]
  32. Shibata Y., Nakata K., Page E. Ultrastructural changes during development of gap junctions in rabbit left ventricular myocardial cells. J Ultrastruct Res. 1980 Jun;71(3):258–271. doi: 10.1016/s0022-5320(80)90078-7. [DOI] [PubMed] [Google Scholar]
  33. Shibata Y., Page E. Gap junctional structure in intact and cut sheep cardiac Purkinje fibers: a freeze-fracture study of Ca2+-induced resealing. J Ultrastruct Res. 1981 May;75(2):195–204. doi: 10.1016/s0022-5320(81)80135-9. [DOI] [PubMed] [Google Scholar]
  34. Sommer J. R., Waugh R. A. The ultrastructure of the mammalian cardiac muscle cell--with special emphasis on the tubular membrane systems. A review. Am J Pathol. 1976 Jan;82(1):192–232. [PMC free article] [PubMed] [Google Scholar]
  35. Warner A. E., Lawrence P. A. Permeability of gap junctions at the segmental border in insect epidermis. Cell. 1982 Feb;28(2):243–252. doi: 10.1016/0092-8674(82)90342-7. [DOI] [PubMed] [Google Scholar]
  36. Weir M. P., Lo C. W. Gap junctional communication compartments in the Drosophila wing disk. Proc Natl Acad Sci U S A. 1982 May;79(10):3232–3235. doi: 10.1073/pnas.79.10.3232. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES